Zero-P Instruments and Implants.
Zero-profile anterior cervical interbody fusion (ACIF) device.
Table of Contents

Introduction
- Zero-P Instruments and Implants 2
- AO Principles 4
- Indications and Contraindications 5

Surgical Technique
- Preoperative Planning 6
- Implant Insertion 7
- Screw Fixation 11
- Option A: Aiming Device 11
- Option B: Drill Guide and Freehand Screw 16
- Option C: Awl and Freehand Screw 19
- Option D: Angled Instruments 22

Product Information
- Implants 25
- Instruments 26
- Set Lists 29
- References 31
Stand-alone ACIF implant

The Zero-P implant is a stand-alone implant for use in cervical interbody fusion, which combines the functionality of a cervical interbody spacer with the benefits of an anterior cervical plate.¹–⁴

Zero-profile

– **Designed to minimize contact with local anatomical structures**
 The Zero-P implant does not extend beyond the confines of the intervertebral disc space, limiting the risk of damage to vessels and adjacent soft tissues. In addition, preparation of the anterior surface of the vertebral body is not necessary, because the implant does not lie against the vertebral body anterior surface.

– **Designed to prevent contact with adjacent levels**
 Cervical plates placed near the adjacent level discs may contribute to bone formation near or around the adjacent level, which may lead to future complications.⁵

Ease of use

– Because the plate and spacer are preassembled, the plate is automatically aligned upon implant insertion. This avoids the process of aligning and realigning an anterior cervical plate.

– The Zero-P screws have a one-step locking conical head which locks the screw to the plate by simply inserting and tightening the screw.
PEEK interbody spacer
- Radiopaque marker for posterior visualization during imaging
- Spacer component is made of pure medical grade PEEK Optima® (polyetheretherketone)
- Teeth on the superior and inferior implant surfaces provide initial stability

Titanium alloy plate
- Provides a secure, rigid screw locking interface
- Stresses in the plate are decoupled from the spacer through an innovative interface

Locking head screws
- Screws form a bone wedge with a $40^\circ \pm 5^\circ$ cranial/caudal angle and 2.5° medial/lateral angle.
- One-step locking screws
- Self-tapping screw improves thread purchase
- Trilobular thread-cutting flutes are self-centering

Synthes Spine 3
In 1958, the AO formulated four basic principles, which have become the guidelines for internal fixation. They are:

- Anatomic reduction
- Stable fixation
- Preservation of blood supply
- Early, active mobilization

The fundamental aims of fracture treatment in the limbs and fusion of the spine are the same. A specific goal in the spine is returning as much function as possible to the injured neural elements.
Indications and Contraindications

Indications
The Synthes Zero-P is a stand-alone anterior cervical interbody fusion device indicated for use in skeletally mature patients with degenerative disc disease (DDD) with accompanying radicular symptoms at one level from C2-T1. DDD is defined as discogenic pain with degeneration of the disc confirmed by history and radiographic studies. These patients should have had six weeks of non-operative treatment. The interior of the spacer component of the Synthes Zero-P should be packed with autogenous bone graft and implanted via an anterior approach.

Contraindications
1. Use of the Synthes Zero-P is contraindicated when there is active systemic infection, infection localized to the site of the proposed implantation, or when the patient has demonstrated allergy or foreign body sensitivity to any of the implant materials.
2. Severe osteoporosis may prevent adequate fixation and thus preclude the use of this or any other orthopaedic implant.
3. Severe obesity or degenerative diseases, are relative contraindications. The decision whether to use these devices in such conditions must be made by the physician taking into account the risks versus the benefits to the patient.
4. Use of these implants is relatively contraindicated in patients whose activity, mental capacity, mental illness, alcoholism, drug abuse, occupation, or lifestyle may interfere with their ability to follow postoperative restrictions. These patients may place undue stresses on the implant during bony healing and may be at a higher risk of implant failure.
5. Prior fusion at the level to be treated.
6. Any condition not described in the Indications for Use.

Please refer to product insert for complete system description, indications and warnings.
Preoperative Planning

Prior to surgery, determine the desired surgical approach and estimate the appropriate Zero-P spacer size.

Notes:
With the segment fully distracted, the Zero-P implant must fit firmly between the end plates before locking head screws are inserted. When rocking the aiming device backward and forward in a cranial to caudal direction, no toggling of the implant should be evident.

It is recommended to select the maximum implant size in order to optimize the stability of the segment through tension in the annulus fibrosus and longitudinal ligaments.
Implant Insertion

1
Approach

Using the standard surgical approach, expose the vertebral bodies to be fused. Prepare the fusion site following the appropriate technique for the given indication.
2 Determine appropriate implant

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.720–.729</td>
<td>Zero-P Trial Spacer, parallel, heights 5–12 mm, purple</td>
</tr>
<tr>
<td>03.617.750–.759</td>
<td>Zero-P Trial Spacer, lordotic, heights 5–12 mm, blue</td>
</tr>
<tr>
<td>03.617.780–.789</td>
<td>Zero-P Trial Spacer, convex, heights 5–12 mm, gold</td>
</tr>
</tbody>
</table>

Optional instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.940</td>
<td>Handle, with large quick coupling</td>
</tr>
<tr>
<td>03.820.113</td>
<td>Slotted Mallet</td>
</tr>
</tbody>
</table>

Selection of the trial spacer depends on the height of the intervertebral space, the preparation technique and the patient’s anatomy. Choose a parallel, lordotic or convex trial spacer of the appropriate height.

Position the trial spacer in the correct cranial/caudal alignment and carefully insert it into the disc space.

The trial spacers do not have a depth limiter; an image intensifier should be used to check the position during insertion. With the segment fully distracted, the trial spacer must fit tightly and accurately between the end plates.

The mallet can be used to help insert and/or remove the trial spacer.

If preferred, a larger handle can be attached to the trial spacers.

Notes:
The trial spacers are color-coded by shape. The height of the trial spacer is 0.8 mm less than that of the corresponding implant to account for penetration of the teeth into the vertebral end plate.

Trial spacers are not for implantation and must be removed before insertion of the Zero-P implant.
3
Pack implant with autogenous bone graft

Instruments
- 03.617.984 Packing Block
- 03.617.970 Cancellous Bone Impactor

Place the appropriate Zero-P implant into the packing block.

Use the cancellous bone impactor to firmly pack the autogenous graft material into the implant cavity.

Note: To ensure optimal contact with the vertebral end plates it is important to fill the implant until the graft material protrudes from the perforations in the spacer.

4
Insert implant

Instrument
- 03.617.963 Aiming Device

Optional instruments
- 03.617.980 Implant Holder
- 03.617.981 Impactor, flat
- 03.617.982 Impactor, ball tip
- 03.820.113 Slotted Mallet

Use the aiming device or implant holder to introduce the implant into the disc space. The recommended orientation is with the medial screws pointing caudally.
The aiming device and the implant holder do not have a depth limiter, therefore an image intensifier should be used to check the position while inserting.

Using the aiming device
Attach the aiming device to the implant by aligning the screw holes of the implant with the retention features on the aiming device and then expanding the aiming device. Once the implant is securely attached, carefully insert the implant into the distracted segment.

If necessary, the top of the aiming device can be tapped with the mallet to advance the implant into the disc space. If distraction has been applied, release the distraction while leaving the aiming device attached to the implant.

Using the implant holder
The implant can be inserted into the disc space with the forceps-type implant holder. Once the implant is partially introduced into the disc space the implant can be advanced to the correct posterior depth using the flat and/or the impactor with ball tip.

Important: Verify final implant position relative to the vertebral bodies in the AP and lateral direction with the help of an intraoperative x-ray. The PEEK spacer has a single posterior x-ray marker incorporated into the implant to enable accurate intraoperative radiographic assessment of the implant position.

Note: The recommended orientation for the implant is with the medial screws pointing caudally. For convex shaped spacers this is the only orientation possible.
The aiming device allows one screw to be inserted with the instrument attached to the implant. This helps to keep the implant in place while the other screw holes are prepared and screws inserted.

A1

Drill first pilot hole through drill and screw hole of aiming device

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.963</td>
<td>Aiming Device</td>
</tr>
<tr>
<td>03.617.912</td>
<td>2.0 mm Drill Bit with 12 mm stop, quick coupling</td>
</tr>
<tr>
<td>03.617.914</td>
<td>2.0 mm Drill Bit with 14 mm stop, quick coupling</td>
</tr>
<tr>
<td>03.617.916</td>
<td>2.0 mm Drill Bit with 16 mm stop, quick coupling</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

Select a drill bit of appropriate stop depth. Insert the drill bit into the drill and screw hole of the aiming device and drill until the stop on the drill contacts the guide. Intraoperative imaging should be used to verify drill position.

Remove the drill bit.

Note: The drill bits are marked with a colored ring corresponding to the color-coded screw lengths.

Caution: When using the drill bit in combination with the aiming device, take care to apply only axial forces to the drill. Bending forces applied when the tip of the drill is engaged in the aiming device can lead to the drill breaking.
A2

Insert first screw

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
<td>Torque Limiting Attachment, 1.2 Nm</td>
</tr>
<tr>
<td>03.617.902</td>
<td>StarDrive Screwdriver Shaft, T8, self-retaining</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

Optional instrument

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.901</td>
<td>Holding Sleeve, for StarDrive Screwdriver Shaft</td>
</tr>
</tbody>
</table>

Select the appropriate screw length according to the preoperative planning and intraoperative findings.

Assemble the torque limiting attachment to the screwdriver shaft and handle.

Caution: If the torque limiting attachment is not used, breakage of the driver may occur and could potentially harm the patient.

Load a screw onto the screwdriver with torque limiting attachment. The screw will self-retain to the screwdriver, however, for increased screw retention the holding sleeve may be used.

Note: Retract the sleeve when inserting the first screw through the aiming device.

Advance the screw until the head of the screw contacts the plate.

Caution: The screws should be tightened only after all screws have been inserted.
A3

Drill remaining pilot holes

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.963</td>
<td>Aiming Device</td>
</tr>
<tr>
<td>03.617.912</td>
<td>2.0 mm Drill Bit with 12 mm stop, quick coupling</td>
</tr>
<tr>
<td>03.617.914</td>
<td>2.0 mm Drill Bit with 14 mm stop, quick coupling</td>
</tr>
<tr>
<td>03.617.916</td>
<td>2.0 mm Drill Bit with 16 mm stop, quick coupling</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

Select a drill bit of appropriate stop depth. Insert the drill bit into a drill hole of the aiming device and drill until the stop on the drill contacts the guide.

Remove the drill bit.

Repeat for the remaining screw holes.

Note: The drill bits are marked with a colored ring corresponding to the color-coded screw lengths.

Caution: When using the drill bit in combination with the aiming device, take care to apply only axial forces to the drill. Bending forces applied when the tip of the drill is engaged in the aiming device can lead to the drill breaking.
Screw Fixation

Option A: Aiming Device continued

A4

Insert remaining screws

Instruments

<table>
<thead>
<tr>
<th>Instrument Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
<td>Torque Limiting Attachment, 1.2 Nm</td>
</tr>
<tr>
<td>03.617.902</td>
<td>StarDrive Screwdriver Shaft, T8, self-retaining</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

Optional instrument

<table>
<thead>
<tr>
<th>Instrument Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.901</td>
<td>Holding Sleeve, for StarDrive Screwdriver Shaft</td>
</tr>
</tbody>
</table>

Remove the aiming device from the implant.

Load the selected screw onto the screwdriver with torque limiting attachment. The screw will self-retain to the screwdriver, however, for increased screw retention the holding sleeve may be used.

Advance the screw until the head of the screw contacts the plate.

Repeat for the remaining screws.

Caution: The screws should be tightened only after all screws have been inserted.

Note: If the aiming device is difficult to remove, verify that the screw is advanced far enough so that the aiming device is not contacting the screw during removal.
A5

Tighten screws

Instruments

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
<td>Torque Limiting Attachment, 1.2 Nm</td>
</tr>
<tr>
<td>03.617.902</td>
<td>StarDrive Screwdriver Shaft, T8, self-retaining</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

To lock the screwhead in the plate, always use the torque limiting attachment with the screwdriver to tighten each screw to the recommended 1.2 Nm torque.

Caution: If the torque limiting attachment is not used, breakage of the driver may occur and could potentially harm the patient.

Note: Screws placed using the surgical technique may not always be flush with the plate, but will be sufficiently locked when 1.2 Nm torque is achieved.
If surgeon preference is to not use the Aiming Device, this alternative technique may be used.

B1

Drill first pilot hole

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.962</td>
<td>Drill Guide with handle</td>
</tr>
<tr>
<td>03.617.912</td>
<td>2.0 mm Drill Bit with 12 mm stop, quick coupling</td>
</tr>
<tr>
<td>03.617.914</td>
<td>2.0 mm Drill Bit with 14 mm stop, quick coupling</td>
</tr>
<tr>
<td>03.617.916</td>
<td>2.0 mm Drill Bit with 16 mm stop, quick coupling</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

It is recommended that the first hole be created for a caudally pointing screw.

Select a drill bit of appropriate length. Determine the entry point and trajectory for the screw. The correct angulations for the screws are 40° in the caudal or cranial direction. The medial screws point 2.5° laterally and the lateral screws point 2.5° medially.

Note: Lateral screws should always point medially.

Insert the drill guide into the screw hole at the appropriate angle. The tip of the drill guide is designed to fit inside the screw hole of the plate and guide the correct angle.

Insert the drill bit into the guide and drill until the stop on the drill contacts the guide.

Remove the drill bit and guide.

Important: Intraoperative imaging should be used to verify drill position.

Note: The drill bits are marked with a colored ring corresponding to the color-coded screw lengths. When the ring is flush with the top of the drill guide the appropriate depth has been reached.
B2

Insert first screw

Instruments

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
<td>Torque Limiting Attachment, 1.2 Nm</td>
</tr>
<tr>
<td>03.617.902</td>
<td>StarDrive Screwdriver Shaft, T8, self-retaining</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

Optional instrument

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.901</td>
<td>Holding Sleeve, for StarDrive Screwdriver Shaft</td>
</tr>
</tbody>
</table>

Select the appropriate screw length according to the preoperative planning and intraoperative findings.

Assemble the torque limiting attachment to the screwdriver shaft and handle.

Caution: If the torque limiting attachment is not used, breakage of the driver may occur and could potentially harm the patient.

Load the screw onto the self-retaining screwdriver with torque limiting attachment. The screw will self-retain to the screwdriver, however, for increased screw retention the holding sleeve may be used.

Advance the screw until the head of the screw contacts the plate.

Intraoperative imaging should be used to verify screw position.

Caution: The screws should be tightened only after all screws have been inserted.
B3

Insert remaining screws

Repeat steps B1 and B2 for the remaining screws.

B4

Tighten screws

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
<td>Torque Limiting Attachment, 1.2 Nm</td>
</tr>
<tr>
<td>03.617.902</td>
<td>StarDrive Screwdriver Shaft, T8, self-retaining</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

To lock the screwhead in the plate, always use the torque limiting attachment with the screwdriver to tighten each screw to the recommended 1.2 Nm torque.

Caution: If the torque limiting attachment is not used, breakage of the driver may occur and could potentially harm the patient.

Note: Screws placed using the surgical technique may not always be flush with the plate, but will be sufficiently locked when 1.2 Nm torque is achieved.
If surgeon preference is to awl and not to use the drilling technique, this alternative technique may be used.

C1

Awl first pilot hole

Instrument

03.617.990 2.0 mm Awl with sleeve

It is recommended that the first hole be created for a caudally pointing screw.

Determine the entry point and trajectory for the screw. The correct angulations for the screws are 40° in the caudal or cranial direction. The medial screws point 2.5° laterally and the lateral screws point 2.5° medially.

Note: Lateral screws should always point medially.

Insert the awl at the appropriate angle into a screw hole in the plate and push down, while simultaneously twisting the handle.

Remove the awl, maintaining alignment of the hole and plate.

Important: Intraoperative imaging should be used to verify awl position.

Note: The tip of the awl is designed to fit inside the screw hole of the plate and guide the correct angle.

Caution: Take care that the awl does not move the implant relative to the vertebral body. For particularly hard bone, drilling is recommended to minimize implant movement.
C2

Insert first screw

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
<td>Torque Limiting Attachment, 1.2 Nm</td>
</tr>
<tr>
<td>03.617.902</td>
<td>StarDrive Screwdriver Shaft, T8, self-retaining</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

Optional instrument

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.901</td>
<td>Holding Sleeve, for StarDrive Screwdriver Shaft</td>
</tr>
</tbody>
</table>

Select the appropriate screw length according to the preoperative planning and intraoperative findings.

Assemble the torque limiting attachment to the screwdriver shaft and handle.

Caution: If the torque limiting attachment is not used, breakage of the driver may occur and could potentially harm the patient.

Load the screw onto the self-retaining screwdriver with torque limiting attachment. The screw will self-retain to the screwdriver, however, for increased screw retention the holding sleeve may be used.

Advance the screw until the head of the screw contacts the plate.

Caution: Intraoperative imaging should be used to verify screw position.

Caution: The screws should be tightened only after all screws have been inserted.
C3

Insert remaining screws

Repeat step C1 and C2 for the remaining screws.

C4

Tighten screws

<table>
<thead>
<tr>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
</tr>
<tr>
<td>03.617.902</td>
</tr>
<tr>
<td>324.107</td>
</tr>
</tbody>
</table>

To lock the screwhead in the plate, always use the torque limiting attachment with the screwdriver to tighten each screw to the recommended 1.2 Nm torque.

Caution: If the torque limiting attachment is not used, breakage of the driver may occur and could potentially harm the patient.

Note: Screws placed using the surgical technique may not always be flush with the plate, but will be sufficiently locked when 1.2 Nm torque is achieved.
Screw Fixation
Option D: Angled Instruments

If patient anatomy does not allow use of the straight instruments, the angled awl and angled screwdriver may be used.

D1
Awl first pilot hole

Instrument

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.993</td>
<td>2.0 mm Angled Awl</td>
</tr>
<tr>
<td>03.820.113</td>
<td>Slotted Mallet</td>
</tr>
</tbody>
</table>

It is recommended that the first hole be created for a caudally pointing screw.

Determine the entry point and trajectory for the screw. The correct angulations for the screws are 40° in the caudal or cranial direction. The medial screws point 2.5° laterally and the lateral screws point 2.5° medially.

Note: Lateral screws should always point medially.

Insert the awl at the appropriate angle into the screw hole of the plate and tap with the slotted mallet until the awl is seated.

Remove the awl, maintaining alignment of the hole and plate.

Important: Intraoperative imaging should be used to verify awl position.
D2

Insert first screw

Instrument

03.617.900 Angled StarDrive Screwdriver, T8, with sleeve, self-retaining

Select the appropriate screw length according to the preoperative planning and intraoperative findings.

Load a screw onto the angled screwdriver. Advance the screw until the head of the screw contacts the plate.

Intraoperative imaging should be used to verify screw position.
D3
Insert remaining screws

Repeat steps D1 and D2 for the remaining screws.

D4
Tighten screws

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.110.002.99</td>
<td>Torque Limiting Attachment, 1.2 Nm</td>
</tr>
<tr>
<td>03.617.902</td>
<td>StarDrive Screwdriver Shaft, T8, self-retaining</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>

To lock the screwhead in the plate, always use the torque limiting attachment with the screwdriver to tighten each screw to the recommended 1.2 Nm torque.

Caution: If the torque limiting attachment is not used, breakage of the driver may occur and could potentially harm the patient.

Note: Screws placed using the surgical technique may not always be flush with the plate, but will be sufficiently locked when 1.2 Nm torque is achieved.
Implants

Zero-P Implants
- Supplied sterile and preassembled (spacer with anterior fixation plate)
- Available in 3 different shapes: convex, lordotic and parallel
- Spacer component: PEEK Optima
 Plate component: Titanium alloy (Ti-6Al-7Nb)

Zero-P Implants, sterile

<table>
<thead>
<tr>
<th>Convex</th>
<th>Lordotic</th>
<th>Parallel</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.617.135S</td>
<td>04.617.125S</td>
<td>04.617.115S</td>
<td>5 mm</td>
</tr>
<tr>
<td>04.617.136S</td>
<td>04.617.126S</td>
<td>04.617.116S</td>
<td>6 mm</td>
</tr>
<tr>
<td>04.617.137S</td>
<td>04.617.127S</td>
<td>04.617.117S</td>
<td>7 mm</td>
</tr>
<tr>
<td>04.617.138S</td>
<td>04.617.128S</td>
<td>04.617.118S</td>
<td>8 mm</td>
</tr>
<tr>
<td>04.617.139S</td>
<td>04.617.129S</td>
<td>04.617.119S</td>
<td>9 mm</td>
</tr>
<tr>
<td>04.617.130S</td>
<td>04.617.120S</td>
<td>04.617.110S</td>
<td>10 mm</td>
</tr>
<tr>
<td>04.617.131S</td>
<td>04.617.121S</td>
<td>04.617.111S</td>
<td>11 mm</td>
</tr>
<tr>
<td>04.617.132S</td>
<td>04.617.122S</td>
<td>04.617.112S</td>
<td>12 mm</td>
</tr>
</tbody>
</table>

3.0 mm Titanium Cervical Spine Locking Screws
- Self-tapping
- Self-centering
- Titanium alloy (Ti-6Al-7Nb)
- Color-coded by screw length

<table>
<thead>
<tr>
<th>Length</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.617.812</td>
<td>12 mm Blue</td>
</tr>
<tr>
<td>04.617.814</td>
<td>14 mm Gold</td>
</tr>
<tr>
<td>04.617.816</td>
<td>16 mm Purple</td>
</tr>
</tbody>
</table>

Note: Screws are provided nonsterile.
Instruments

03.110.002.99 Torque Limiting Attachment, 1.2 Nm

03.617.720– Zero-P Trial Spacers, parallel, 5–12 mm heights
03.617.729

03.617.750– Zero-P Trial Spacers, lordotic, 5–12 mm heights
03.617.759

03.617.780– Zero-P Trial Spacers, convex, 5–12 mm heights
03.617.789

03.617.900 Angled StarDrive Screwdriver, T8, with sleeve, self-retaining

03.617.901 Holding Sleeve for StarDrive Screwdriver Shaft (03.617.902)

03.617.902 StarDrive Screwdriver Shaft, T8, self-retaining

03.617.912– 2.0 mm Drill Bits, quick coupling with 12 mm stop
03.617.914
03.617.916
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.940</td>
<td>Handle, with large quick coupling</td>
</tr>
<tr>
<td>03.617.962</td>
<td>Drill Guide with handle</td>
</tr>
<tr>
<td>03.617.963</td>
<td>Aiming Device</td>
</tr>
<tr>
<td>03.617.970</td>
<td>Cancellous Bone Impactor</td>
</tr>
<tr>
<td>03.617.980</td>
<td>Implant Holder</td>
</tr>
<tr>
<td>03.617.981</td>
<td>Impactor, flat</td>
</tr>
<tr>
<td>03.617.982</td>
<td>Impactor, ball tip</td>
</tr>
</tbody>
</table>
Zero-P Instruments and Implants Technique Guide

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.617.984</td>
<td>Packing Block, for Zero-P implants</td>
</tr>
<tr>
<td>03.617.990</td>
<td>2.0 mm Awl, with sleeve</td>
</tr>
<tr>
<td>03.617.993</td>
<td>2.0 mm Angled Awl</td>
</tr>
<tr>
<td>03.820.113</td>
<td>Slotted Mallet</td>
</tr>
<tr>
<td>324.107</td>
<td>Quick Coupling Handle</td>
</tr>
</tbody>
</table>
Zero-P Instrument and Titanium Screw Set (01.617.900)

Graphic Case
- **60.617.900** Graphic Case, for Zero-P Instrument and Implant Set

Module
- **60.617.902** Module, for Trial Implants

Instruments
- **03.110.002.99** Torque Limiting Attachment, 1.2 Nm
- **03.617.900** Angled StarDrive Screwdriver, T8, with sleeve, self-retaining
- **03.617.901** Holding Sleeve, for StarDrive Screwdriver Shaft
- **03.617.902** StarDrive Screwdriver Shaft, T8, self-retaining, quick coupling, 2 ea.
- **03.617.912** 2.0 mm Drill Bit with 12 mm Stop, quick coupling, 2 ea.
- **03.617.914** 2.0 mm Drill Bit with 14 mm Stop, quick coupling, 2 ea.
- **03.617.916** 2.0 mm Drill Bit with 16 mm Stop, quick coupling, 2 ea.
- **03.617.940** Handle, with large quick coupling
- **03.617.962** Drill Guide with handle
- **03.617.963** Aiming Device
- **03.617.970** Cancellous Bone Impactor
- **03.617.980** Implant Holder
- **03.617.981** Impactor, flat
- **03.617.982** Impactor, ball tip
- **03.617.984** Packing Block, for Zero-P implants
- **03.617.990** 2.0 mm Awl with sleeve
- **03.617.993** 2.0 mm Angled Awl
- **03.820.113** Slotted Mallet
- **324.107** Quick Coupling Handle, with swivel cap, 2 ea.

Implants
- **3.0 mm Titanium Cervical Spine Locking Screws**, 10 ea.
- **04.617.812** 12 mm
- **04.617.814** 14 mm
- **04.617.816** 16 mm

Also Available
- **03.617.971** Conical Extraction Screw
- **03.617.975** 2.0 mm Drill Bit, quick coupling, for Conical Extraction Screw

Note: For additional information, please refer to package insert.
For detailed cleaning and sterilization instructions, please refer to http://www.synthes.com/sites/NA/MedicalCommunity/Pages/Cleaning_and_Sterilization.aspx or to the below listed inserts, which will be included in the shipping container:

- Processing Synthes Reusable Medical Devices—Instruments, Instrument Trays and Graphic Cases—DJ1305
- Processing Non-sterile Synthes Implants—DJ1304
Zero-P Trial Spacer and Implant Sets

Zero-P Parallel Trial Spacer Set (01.617.901)
- 03.617.725 5 mm height
- 03.617.726 6 mm height
- 03.617.727 7 mm height
- 03.617.728 8 mm height
- 03.617.729 9 mm height
- 03.617.730 10 mm height
- 03.617.731 11 mm height
- 03.617.732 12 mm height

Zero-P Parallel Implant Set (01.617.910)
with sterile implants
- 04.617.115S 5 mm height, 1 ea.
- 04.617.116S 6 mm height, 2 ea.
- 04.617.117S 7 mm height, 3 ea.
- 04.617.118S 8 mm height, 3 ea.
- 04.617.119S 9 mm height, 2 ea.
- 04.617.120S 10 mm height, 1 ea.
- 04.617.121S 11 mm height, 1 ea.
- 04.617.122S 12 mm height, 1 ea.

60.807.050 Carry Case for Zero-P Implants

Zero-P Lordotic Trial Spacer Set (01.617.902)
- 03.617.755 5 mm height
- 03.617.756 6 mm height
- 03.617.757 7 mm height
- 03.617.758 8 mm height
- 03.617.759 9 mm height
- 03.617.760 10 mm height
- 03.617.761 11 mm height
- 03.617.762 12 mm height

Zero-P Lordotic Implant Set (01.617.920)
with sterile implants
- 04.617.125S 5 mm height, 1 ea.
- 04.617.126S 6 mm height, 2 ea.
- 04.617.127S 7 mm height, 3 ea.
- 04.617.128S 8 mm height, 3 ea.
- 04.617.129S 9 mm height, 2 ea.
- 04.617.130S 10 mm height, 1 ea.
- 04.617.131S 11 mm height, 1 ea.
- 04.617.132S 12 mm height, 1 ea.

60.807.050 Carry Case for Zero-P Implants

Zero-P Convex Trial Spacer Set (01.617.903)
- 03.617.785 5 mm height
- 03.617.786 6 mm height
- 03.617.787 7 mm height
- 03.617.788 8 mm height
- 03.617.789 9 mm height
- 03.617.790 10 mm height
- 03.617.791 11 mm height
- 03.617.792 12 mm height

Zero-P Convex Implant Set (01.617.930)
with sterile implants
- 04.617.135S 5 mm height, 1 ea.
- 04.617.136S 6 mm height, 2 ea.
- 04.617.137S 7 mm height, 3 ea.
- 04.617.138S 8 mm height, 3 ea.
- 04.617.139S 9 mm height, 2 ea.
- 04.617.140S 10 mm height, 1 ea.
- 04.617.141S 11 mm height, 1 ea.
- 04.617.142S 12 mm height, 1 ea.

60.807.050 Carry Case for Zero-P Implants

