Oracle Spacer System. Instruments and implants for a direct lateral approach to the lumbar spine.

Technique Guide
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Oracle Spacer System</td>
</tr>
<tr>
<td>AO Principles</td>
</tr>
<tr>
<td>Indications</td>
</tr>
<tr>
<td>Surgical Technique</td>
</tr>
<tr>
<td>Preparation</td>
</tr>
<tr>
<td>Preoperative Planning and Position Patient</td>
</tr>
<tr>
<td>Approach</td>
</tr>
<tr>
<td>Insert Retractor</td>
</tr>
<tr>
<td>Perform Discectomy</td>
</tr>
<tr>
<td>Prepare Endplates</td>
</tr>
<tr>
<td>Trial for Implant Size</td>
</tr>
<tr>
<td>Insert Implant</td>
</tr>
<tr>
<td>Supplemental Fixation</td>
</tr>
<tr>
<td>Product Information</td>
</tr>
<tr>
<td>Implants</td>
</tr>
<tr>
<td>Instruments</td>
</tr>
<tr>
<td>Set Lists</td>
</tr>
</tbody>
</table>
The Oracle Spacer System is a comprehensive set of instruments and implants designed to support a direct lateral approach to the lumbar spine. The direct lateral approach is a minimally invasive approach that avoids the anterior vessels and posterior nervous and bony structures.

Access instruments
Retractor
– Provides direct minimal access to operative level
– Allows fluoroscopic visualization
– Blades expand distally for additional access

Retractor accessories
– Light clip illuminates the surgical field
– Disc anchor and retractor pins increase retractor stability
– Extension blades provide additional 10 mm to the blade length in situ

Discectomy instruments
– Two styles of shavers, four-fluted and two-fluted, ream out disc material
– Bayoneted curettes ensure maximum visibility while supporting a minimal exposure
– Instruments’ matte finish reduces glare from OR lighting
Four radiopaque marker pins enable visualization of spacer position.

Synthes Spine Oracle Spine Made from polyetheretherketone (PEEK).

For more information on implants, please refer to the Oracle Spacer brochure.

Insertion instruments
- Trial spacers’ self-distracting nose allows easier insertion
- Slap hammer minimizes force required for trial spacer removal
- SQUID inserts and distracts in one simple step, without impaction

Oracle implants
- Anatomic shape mimics the anatomy of the disc space

- Four radiopaque marker pins enable visualization of spacer position
- Self-distracting nose allows easier insertion
- Large central canal accommodates autogenous bone graft to allow fusion to occur through the spacer
- Pyramidal teeth provide resistance to spacer migration

Oracle SQUID

Spacer made from polyetheretherketone (PEEK).
For more information on implants, please refer to the Oracle Spacer brochure.
AO Principles

In 1958, the AO formulated four basic principles, which have become the guidelines for internal fixation. They are:

- Anatomic reduction
- Stable internal fixation
- Preservation of blood supply
- Early, active mobilization

The fundamental aims of fracture treatment in the limbs and fusion of the spine are the same. A specific goal in the spine is returning as much function as possible to the injured neural elements.

AO Principles as Applied to the Spine

Anatomic alignment
In the spine, this means reestablishing and maintaining the natural curvature and the protective function of the spine. By regaining this natural anatomy, the biomechanics of the spine can be improved, and a reduction of pain can be experienced.

Stable internal fixation
In the spine, the goal of internal fixation is to maintain not only the integrity of a mobile segment, but also to maintain the balance and the physiologic three-dimensional form of the spine. A stable spinal segment allows bony fusion at the junction of the lamina and pedicle.

Preservation of blood supply
The proper atraumatic technique enables minimal retraction or disturbance of the nerve roots and dura, and maintains the stability of the facet joints. The ideal surgical technique and implant design minimize damage to anatomical structures, i.e. facet capsules and soft tissue attachments remain intact, and create a physiological environment that facilitates healing.

Early, active mobilization
The ability to restore normal spinal anatomy may permit the immediate reduction of pain, resulting in a more active, functional patient. The reduction in pain and improved function can result when a stable spine is achieved.

2. Ibid.
The Oracle Spacer is indicated for use in patients with degenerative disc disease (DDD) at one or two contiguous levels from L2 to S1 whose condition requires the use of interbody fusion combined with supplemental fixation. The interior of the Oracle Spacer should be packed with autogenous bone graft (i.e. autograft).

DDD is defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies. These patients should be skeletally mature and have had six months of nonoperative treatment.

*The Oracle Spacer is intended to be used with Synthes supplemental fixation, e.g. TSLP, ATB, Antegra, Pangea, USS (including Click’X) and Small Stature USS.
1 Preparation

Required sets

- 01.809.001 Oracle Implant Set
- 01.809.002 Oracle Access Instrument Set
- 01.809.003 Oracle Discectomy Instrument Set
- 01.809.004 Oracle Insertion Instrument Set
- 01.809.018 Stability System
 or
- 01.612.100 MIS Support System

Required instruments

- 03.809.860 Tissue Dissector
- 03.809.925S Oracle Retractor Light Clip, sterile
- PDL102 Slotted Mallet

Required kit

- 03.809.002S Oracle Neuromonitoring Kit*

Also Available

- 01.605.500 Minimally Invasive Posterior Instrument Set
- 01.605.600 ProPrep Disc Preparation Set
- 03.809.809 Oracle Broach

*Kit contains a sterile pouch with a disposable monopolar stimulating probe with touchproof cable assembly and the following components in a nonsterile pouch: A nonsterile sticky pad ground electrode, eight EO sterile twisted pair needle electrodes and two EO sterile single needle electrodes.
2

Preoperative planning

All necessary imaging studies should be available to plan implant placement and visualize individual patient anatomy.

3

Position patient

Required kit

03.809.002S Oracle Neuromonitoring Kit

The neurophysiologist or neuromonitoring technician should apply all appropriate electrodes prior to patient positioning.

Place the patient in a lateral decubitus position. A bolster placed underneath the hip, to aid in opening the space between the twelfth rib and iliac crest, is recommended. It is also recommended to flex the table, to aid in opening the space between the twelfth rib and iliac crest. Secure the patient to the table.

Use caution to prevent undue pressure points when positioning and securing the patient.
4 Approach spine

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.809.002S</td>
<td>Oracle Neuromonitoring Kit</td>
</tr>
<tr>
<td>03.809.858*</td>
<td>Small Adjacent Dilator</td>
</tr>
<tr>
<td>03.809.859*</td>
<td>Large Adjacent Dilator</td>
</tr>
</tbody>
</table>

Locate the correct operative level and incision location with fluoroscopic views. Make a skin incision targeting the anterior third of the intravertebral disc space. A longitudinal incision should be used, if multiple levels will be fused.

Once the skin incision is made and the subcutaneous tissue is taken down, the oblique muscles of the abdomen should be visible. Separate the muscle fibers with blunt dissection and enter the retroperitoneal space. Move the peritoneum anterior with forefinger and continue blunt dissection, to palpate down to the transverse process. Slide forward to the psoas muscle (Figures 1 and 2).

Assemble the monopolar stimulating probe.

Attach the cable to the handle and then to the proximal end of the monopolar stimulating probe. Pass the opposite end of the cable to the neurophysiologist or neuromonitoring technician (Figure 3).

*Also available
Fluoroscopy is recommended, to ensure targeting of the anterior two-thirds of the disc space of concern. By stimulating with the monopolar probe, determine a safe entry through the psoas muscle. Start in the anterior psoas and move as far posterior as possible.

After safe entry is established, push the stimulating probe through the psoas muscle as far posterior as possible. Continue into the annulus of the desired intervertebral disc space. Use fluoroscopy with lateral images to determine the location of the stimulating probe (Figure 4).

Note: Do not impact on the probe.

Remove the white handle and lead wire from the probe (Figure 5).
Slide the small adjacent dilator anteriorly over the probe (Figure 6). Slide the large adjacent dilator anteriorly over the small adjacent dilator and the probe (Figure 7).

Note: Use AP fluoroscopy to verify that each adjacent dilator has fully passed through the psoas and into the disc space.
Insert Retractor

5

Insert retractor

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.809.857</td>
<td>Retractor Blade Driver</td>
</tr>
<tr>
<td>03.809.900</td>
<td>Retractor Handle</td>
</tr>
<tr>
<td>03.809.903–03.809.915</td>
<td>Retractor Blades, 40 mm–160 mm</td>
</tr>
<tr>
<td>03.809.918</td>
<td>Retractor Blade Extension</td>
</tr>
<tr>
<td>03.809.919</td>
<td>Retractor Intradiscal Anchor</td>
</tr>
<tr>
<td>03.809.923</td>
<td>Retractor Extension Driver</td>
</tr>
<tr>
<td>03.809.941</td>
<td>Universal Arm</td>
</tr>
<tr>
<td>03.809.942</td>
<td>Table Clamp, for Universal Arm</td>
</tr>
<tr>
<td>388.14</td>
<td>Socket Wrench with straight handle</td>
</tr>
</tbody>
</table>

Optional instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.612.031</td>
<td>Fiber Optic Light Cable</td>
</tr>
<tr>
<td>03.809.925S*</td>
<td>Oracle Retractor Light Clip, sterile</td>
</tr>
<tr>
<td>03.809.943</td>
<td>Retractor Pin</td>
</tr>
<tr>
<td>03.820.101</td>
<td>Self-Retaining Screwdriver</td>
</tr>
</tbody>
</table>

Assemble the retractor blades to the retractor handle.

Determine the appropriate retractor blade length from the depth indicators on the tissue dissector. Assemble the blades to the retractor handle with the retractor blade driver.

Note: Do not over-torque the blade driver. Finger-tightening is more than sufficient to retain the blades to the retractor handle. In the event the blade screws become stripped, order replacement blade screws (D64).

Also available
Slide the retractor over the adjacent dilators and probe. Use an anterior/posterior fluoroscopic image to determine the position of the retractor blade tips. Retractor blades should contact the disc and/or vertebral endplates, perpendicular to the disc space. If they are separated from the disc space and/or vertebral endplates, push down on the retractor to push through the psoas muscle before opening the retractor, to minimize the tissue creep (Figure 1).

Remove the adjacent dilators. Maintain the probe in position for a point of reference, open the retractor to the desired position and turn the speedup to lock it (Figure 2).

Note: Initial cavity of the retractor is 18 mm and fully expands to 70 mm.
Use the universal arm and table clamp to stabilize the retractor to the OR table. Turn the table clamp lever counterclockwise to loosen. Slide the table clamp onto the OR table rail. Insert the post of the universal arm through the opening of the table clamp with the articulation of the arm facing the patient. Turn the table clamp lever clockwise to tighten. Insert the universal arm into the connector of the retractor handle and turn the knob on the arm clockwise to tighten (Figure 3).

The MIS Support System may also be used to stabilize the retractor (refer to the MIS Support System Assembly Guide).

Retract the third blade posteriorly by turning the knob clockwise with the socket wrench. The third blade should not be placed much beyond the posterior 1/3 margin of the disc space, to avoid any neural structures. To release the amount of retraction, push the button and turn the knob counterclockwise with the socket wrench (Figure 4).

Note: The independent third blade provides up to 20 mm retraction.

With the blades open and secure, slide the light clip onto either the cranial or caudal blades of the retractor. Bend the clip to increase visualization. Insert the light clip cable into the end of the fiber optic light cable. Turn on the light source. Under direct vision, stimulate the exposed area with the monopolar stimulating probe to ensure the surgical field is free of nerve roots.
For further retraction, the cranial and caudal blades can independently provide up to 15° of cranial and caudal angulation. Use the socket wrench on either the cranial or caudal knob and turn counterclockwise to release, or clockwise to tighten, into the desired position (Figure 5).

For increased retractor stability, attach the intradiscal anchor to the third blade by screwing the anchor onto the extension driver. Slide the anchor down the grooves of the third blade. Unscrew the driver from the anchor (Figure 6).

Optional instruments

- 03.809.943 Retractor Pin
- 03.820.101 Self-Retaining Screwdriver

For additional retractor stability, attach the retractor pin to the self-retaining screwdriver. Slide the pin down the grooves of either the cranial or caudal blade and screw the pin into the vertebral body. It is recommended to remove the retractor pin before any distraction or trialing of disc space (Figure 6).
If the psoas or soft tissue creeps beneath the cranial or caudal blades, the blade extensions provide an additional 10 mm extension. Assemble the blade extension to the extension driver and slide the blade extension down the grooves of either the cranial or caudal blade, while holding back the psoas muscle (Figure 7).
Perform discectomy

Instruments

- **03.605.001/03.605.002** Disc Rongeurs, straight, without teeth, 4 mm and 6 mm widths
- **03.605.004** Endplate Elevator, 20 mm width, 430 mm length
- **03.809.819–03.809.827** Oracle Paddle Shavers, 9 mm–17 mm heights
- **03.809.829–03.809.837** Oracle Shavers, 9 mm–17 mm heights
- **03.809.861–03.809.870** Oracle Curettes, bayoneted, 5.5 mm or 7.5 mm cup width
- **03.809.872/03.809.873** Oracle Bayoneted Ring Curettes, 8 mm and 6 mm widths
- **394.951** Quick Release T-Handle

Remove disc material from the intervertebral space using any of the following: endplate elevator, cup and ring curettes, rongeurs, or shavers.

The endplate elevator can be used to loosen the disc material from the endplates. Use fluoroscopy to ensure complete removal of disc material.

Use the forward biting cup curettes to push disc material (Figure 1) and the 90° up-biting curettes to collect disc material from the disc space (Figure 2). The cup curettes are available in two cup sizes, 5.5 mm denoted by the white band, and 7.5 mm denoted by the green band.

The shavers can be used initially to ream out disc material or for final removal of the disc material and cartilaginous tissue. The Oracle shaver is shown in Figure 3.

Note: The medial/lateral dimension of the shavers is 50 mm (Figure 3 insets). The height is undersized by 1 mm, compared to the implant height, to ensure a tight fit for final implant insertion.
Prepare Endplates

After the discectomy is performed, break through the contralateral annulus with the endplate elevator. Use a fluoroscopic image to determine that the contralateral annulus has been perforated.

Optional instruments

- 03.809.875 – Oracle Spreaders,
- 03.809.877 9 mm–13 mm heights

If the disc is severely collapsed, use the spreaders to distract and re-create the normal disc height, restore lordosis, and open the neuroforamen (Figure 4).

Note: The medial/lateral dimension of the spreader is 50 mm.

7

Prepare endplates

Instrument

- 03.809.849 Oracle Rasp (8 mm height)

When the discectomy is complete, use the rasp to remove the superficial cartilaginous layers of the endplates and expose bleeding bone.

Important: Excessive removal of the subchondral bone may weaken the vertebral endplate. If the entire endplate is removed, subsidence and a loss of segmental stability may result.

Note: The medial/lateral dimension of the rasp is 35 mm.
Trial for Implant Size

8

Trial for implant size

Instruments

03.809.229 – Oracle Trial Spacers, 0° angle, 9 mm–17 mm heights
03.809.237 – Oracle Trial Spacers, 0° angle, 9 mm–17 mm heights
03.809.629 – Oracle Trial Spacers, 8° angle, 9 mm–17 mm heights
03.809.637 – Oracle Trial Spacers, 8° angle, 9 mm–17 mm heights
03.809.930 – Inline Handle, with quick release and sport grip

Connect an appropriately sized trial spacer to the handle. Insert the trial spacer into the disc space, ensuring that the orientation of the trial spacer is correct. Each lordotic trial spacer is etched with anterior and posterior markings. Controlled and light hammering on the trial spacer handle may be required to advance the trial spacer into the intervertebral disc space.

Use fluoroscopy to confirm the fit of the trial spacer. Each trial spacer has a center opening that can be visualized in an AP fluoroscopic view. This center rib of the trial should align with the spinous processes or be equidistant from the pedicles on an AP fluoroscopic view. If the trial spacer appears too small or too tight, try the next larger or smaller size height until the most secure fit is achieved (Figure 1).

Note: The anterior/posterior dimension of the trial spacer is 22 mm to correspond to the implant. The trial spacers’ medial/lateral dimension is 50 mm (Figure 2). Use fluoroscopy to determine the appropriate ML dimension of the implant for the patient. Take a lateral fluoroscopic image to determine the anterior and posterior position of the trial spacer. The trial spacer, and ultimately the implant, should sit within the anterior 2/3 of the intervertebral disc space. The height of the trial spacer is undersized by 1 mm, compared to the implant, to ensure a tight fit for final implant insertion.
9

Remove trial spacer

Instrument

03.809.972 Oracle Slap Hammer

Slide the Oracle slap hammer onto the end of the inline handle. While holding the handle with one hand, apply an upward force to the slap hammer with the other hand (Figure 1). Repeat this process until the trial spacer is removed.

Note: Hold down the retractor while removing the trial spacers.

Remove the Oracle slap hammer from the handle by pushing on the end of the slap hammer (Figure 2).

10

Insert implant

Instruments

03.809.874 Oracle Implant Holder

03.809.881 Oracle Impactor

03.809.921 Oracle Lateral Quick Inserter/Distractor (SQUID)

Select an Oracle implant that corresponds to the height measured using the trial spacer in the previous steps.

Option 1: Using the Oracle lateral quick inserter/distractor

Turn the T-handle counterclockwise until the pusher stops. When the thread is completely turned, place the instrument flat on the table to load the implant.

Pack the interior of the implant with autologous bone. Place the implant into the rails, ensuring the implant is securely seated into the pusher.

Note: Anterior/posterior etching on the rails ensure proper loading of lordotic implants.
Insert Implant continued

Turn the T-handle clockwise until the implant is engaged by both rails. The implant is now held securely.

Note: Ensure that the implant is centered and follows the rails between the implant teeth.

Place the tips of the instrument into the disc space so the depth stops touch the lateral rim of the vertebral bodies. To ensure proper insertion of the implant, take an anterior/posterior fluoroscopic image to determine that the inserter is perpendicular to the intervertebral space and depth stops are touching the lateral rim of the vertebral bodies. The tips of the instrument are 35 mm in depth from the depth stops, 20 mm in width, and 1 mm thick.

While applying a firm and stationary force on the grip with one hand, turn the T-handle clockwise to advance the implant down the rails and into the disc space. Using fluoroscopic images, verify the implant’s progression and the location of the depth stops on the vertebral bodies.

Continue turning the T-handle until it bottoms out on the grip. The inserter fully ejects and releases the implant.

Note: Do not impact on the Oracle lateral quick inserter/distractor. The Oracle lateral quick inserter/distractor is designed to leave the implant 1 mm proud to the proximal aspect of the vertebral bodies. Depending on surgeon preference of final implant position, the surgeon may choose to remove the inserter and use the Oracle impactor to seat the implant in its desired position (i.e. flush or recessed).

Use fluoroscopy to determine the position of the implant. With an AP fluoroscopic image, the two anterior/posterior radiopaque pins of the implant should appear as one marker. These pins should line up with the midportion of the spinous process, or the lateral markers should be equidistant from the lateral edges of the vertebral bodies (Figure 1).

Note: The medial/lateral marker pins of the implant are located approximately 3.85 mm from the edges of the implant.
With a medial/lateral fluoroscopic image, the two medial/lateral radiopaque pins of the implant should appear as one marker. The most anterior, middle radiopaque marker should be countersunk from the anterior edge of the vertebral bodies (Figure 2).

Note: The anterior/posterior marker pins of the implant are located approximately 2.25 mm from the edges of the implant.

Option 2: Using the Oracle implant holder

If using the Oracle implant holder, attach the jaws of the holder to the instrument slot of the implant and tighten the speednut. Ensure that the implant is held flush against the neck of the implant holder and securely in the jaws of the holder.

After being fixed to the implant holder, the interior of the implant can be packed with autologous bone. Introduce the implant into the intervertebral disc space, ensuring that the orientation of the implant is correct (Figure 3).

Note: Do not impact on the Oracle implant holder.

Remove the implant holder and use the Oracle impactor to seat the implant in its final position (Figure 4).
Supplemental fixation

The Oracle spacer is intended to be used with Synthes supplemental fixation, e.g. TSLP, ATB, Antegra, Pangea, USS (including Click’X) and Small Stature USS.

One-level lateral view of Oracle spacer and Pangea immediately postoperative.

One-level lateral view of Oracle spacer and Antegra immediately postoperative.

One-level AP view of Oracle spacer and Pangea immediately postoperative.

One-level AP view of Oracle spacer and Antegra immediately postoperative.
Oracle Spacers

Oracle Spacers, 0° angle, 40 mm x 22 mm*

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>08.809.209</th>
<th>08.809.211</th>
<th>08.809.213</th>
<th>08.809.215</th>
<th>08.809.217</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Oracle Spacers, 0° angle, 45 mm x 22 mm

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>08.809.229</th>
<th>08.809.231</th>
<th>08.809.233</th>
<th>08.809.235</th>
<th>08.809.237</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Oracle Spacers, 0° angle, 50 mm x 22 mm

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>08.809.249</th>
<th>08.809.251</th>
<th>08.809.253</th>
<th>08.809.255</th>
<th>08.809.257</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Oracle Spacers, 0° angle, 55 mm x 22 mm*

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>08.809.269</th>
<th>08.809.271</th>
<th>08.809.273</th>
<th>08.809.275</th>
<th>08.809.277</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

*Also available
Total combined height of teeth is 2 mm.
Oracle Spacers

Oracle Spacers, 8° angle, 40 mm x 22 mm*

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Posterior Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.809.609</td>
<td>9</td>
</tr>
<tr>
<td>08.809.611</td>
<td>11</td>
</tr>
<tr>
<td>08.809.613</td>
<td>13</td>
</tr>
<tr>
<td>08.809.615</td>
<td>15</td>
</tr>
<tr>
<td>08.809.617</td>
<td>17</td>
</tr>
</tbody>
</table>

Oracle Spacers, 8° angle, 45 mm x 22 mm*

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Posterior Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.809.629</td>
<td>9</td>
</tr>
<tr>
<td>08.809.631</td>
<td>11</td>
</tr>
<tr>
<td>08.809.633</td>
<td>13</td>
</tr>
<tr>
<td>08.809.635</td>
<td>15</td>
</tr>
<tr>
<td>08.809.637</td>
<td>17</td>
</tr>
</tbody>
</table>

Oracle Spacers, 8° angle, 50 mm x 22 mm*

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Posterior Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.809.649</td>
<td>9</td>
</tr>
<tr>
<td>08.809.651</td>
<td>11</td>
</tr>
<tr>
<td>08.809.653</td>
<td>13</td>
</tr>
<tr>
<td>08.809.655</td>
<td>15</td>
</tr>
<tr>
<td>08.809.657</td>
<td>17</td>
</tr>
</tbody>
</table>

Oracle Spacers, 8° angle, 55 mm x 22 mm*

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Posterior Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.809.669</td>
<td>9</td>
</tr>
<tr>
<td>08.809.671</td>
<td>11</td>
</tr>
<tr>
<td>08.809.673</td>
<td>13</td>
</tr>
<tr>
<td>08.809.675</td>
<td>15</td>
</tr>
<tr>
<td>08.809.677</td>
<td>17</td>
</tr>
</tbody>
</table>

*Also available
Total combined height of teeth is 2 mm.
<table>
<thead>
<tr>
<th>Instrument Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.605.001</td>
<td>Disc Rongeur, straight, without teeth, 4 mm width, 330 mm length</td>
</tr>
<tr>
<td>03.605.002</td>
<td>Disc Rongeur, straight, without teeth, 6 mm width, 330 mm length</td>
</tr>
<tr>
<td>03.605.004</td>
<td>Endplate Elevator, 20 mm width, 430 mm length</td>
</tr>
<tr>
<td>03.612.031</td>
<td>Fiber Optic Light Cable</td>
</tr>
<tr>
<td>03.809.229–</td>
<td>Oracle Trial Spacers, 0º, 9 mm–17 mm heights (2 mm increments)</td>
</tr>
<tr>
<td>03.809.237</td>
<td></td>
</tr>
<tr>
<td>03.809.629–</td>
<td>Oracle Trial Spacers, 8º, 9 mm–17 mm heights (2 mm increments)</td>
</tr>
<tr>
<td>03.809.637</td>
<td></td>
</tr>
<tr>
<td>03.809.819–</td>
<td>Oracle Paddle Shavers, 9 mm–17 mm height (2 mm increments)</td>
</tr>
<tr>
<td>03.809.827</td>
<td></td>
</tr>
</tbody>
</table>
Instruments continued

03.809.829– 03.809.857 Retractor Blade Driver
03.809.861 straight up
03.809.862 forward biting
03.809.863 straight down
03.809.864 up-biting

Oracle Curettes, bayoneted,
7.5 mm cup width
03.809.861 straight up
03.809.862 forward biting
03.809.863 straight down
03.809.864 up-biting

Oracle Curettes, bayoneted,
5.5 mm cup width
03.809.865 straight up
03.809.866 forward biting
03.809.867 straight down
03.809.868 up-biting

03.809.849 Oracle Rasp

03.809.857 Retractor Blade Driver

03.809.829– Oracle Shavers,
03.809.837 9 mm–17 mm heights (2 mm increments)
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.809.869</td>
<td>Oracle Curette, bayoneted, 90°, up-biting, 7.5 mm cup width</td>
</tr>
<tr>
<td>03.809.870</td>
<td>Oracle Curette, bayoneted, 90°, up-biting, 5.5 mm cup width</td>
</tr>
<tr>
<td>03.809.872</td>
<td>Oracle Bayoneted Ring Curette, 8 mm tip width</td>
</tr>
<tr>
<td>03.809.873</td>
<td>Oracle Bayoneted Ring Curette, 6 mm tip width</td>
</tr>
<tr>
<td>03.809.874</td>
<td>Oracle Implant Holder</td>
</tr>
<tr>
<td></td>
<td>Oracle Spreaders</td>
</tr>
<tr>
<td>03.809.875</td>
<td>9 mm height</td>
</tr>
<tr>
<td>03.809.876</td>
<td>11 mm height</td>
</tr>
<tr>
<td>03.809.877</td>
<td>13 mm height</td>
</tr>
</tbody>
</table>
Instruments continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.809.881</td>
<td>Oracle Impactor</td>
<td></td>
</tr>
<tr>
<td>03.809.900</td>
<td>Retractor Handle</td>
<td></td>
</tr>
<tr>
<td>03.809.903–03.809.915</td>
<td>Retractor Blades, 40 mm–160 mm (10 mm increments)</td>
<td></td>
</tr>
<tr>
<td>03.809.918</td>
<td>Retractor Blade Extension</td>
<td></td>
</tr>
<tr>
<td>03.809.919</td>
<td>Retractor Intradiscal Anchor</td>
<td></td>
</tr>
<tr>
<td>03.809.921</td>
<td>Oracle Lateral Quick Inserter/Distractor (SQUID)</td>
<td></td>
</tr>
</tbody>
</table>
03.809.923 Retractor Extension Driver

03.809.930 Inline Handle, with quick release and sport grip

03.809.940 Oracle Implant Remover

03.809.941 Universal Arm

03.809.942 Table Clamp for Universal Arm
03.809.943 Retractor Pin

03.809.972 Oracle Slap Hammer

03.809.973 Bayoneted Scalpel Handle

03.809.974 Bipolar Forceps

03.809.975 Long Suction Instrument
03.809.977 Soft Tissue Retractor, 6 mm

03.820.101 Self-Retaining Screwdriver

388.14 Socket Wrench with straight handle, 6 mm width across flats

389.713 Blunt Dissector, 6 mm/7 mm

394.951 Quick Release T-Handle
Oracle Implant Set (01.809.001)

Graphic Case

60.809.001 Graphic Case, for Oracle Implants includes (60.809.005 and 60.809.006)

Implants

Oracle Spacers, 0° angle, 2 ea.
08.809.229 45 mm x 22 mm, 9 mm height
08.809.231 45 mm x 22 mm, 11 mm height
08.809.233 45 mm x 22 mm, 13 mm height
08.809.235 45 mm x 22 mm, 15 mm height
08.809.237 45 mm x 22 mm, 17 mm height
08.809.249 50 mm x 22 mm, 9 mm height
08.809.251 50 mm x 22 mm, 11 mm height
08.809.253 50 mm x 22 mm, 13 mm height
08.809.255 50 mm x 22 mm, 15 mm height
08.809.257 50 mm x 22 mm, 17 mm height

Oracle Spacers, 8° angle, 2 ea.
08.809.629 45 mm x 22 mm, 9 mm height
08.809.631 45 mm x 22 mm, 11 mm height
08.809.633 45 mm x 22 mm, 13 mm height
08.809.635 45 mm x 22 mm, 15 mm height
08.809.637 45 mm x 22 mm, 17 mm height
08.809.649 50 mm x 22 mm, 9 mm height
08.809.651 50 mm x 22 mm, 11 mm height
08.809.653 50 mm x 22 mm, 13 mm height
08.809.655 50 mm x 22 mm, 15 mm height
08.809.657 50 mm x 22 mm, 17 mm height
Graphic Case
60.809.002 Graphic Case, for Oracle Spacing System
Access Instruments

Instruments
03.809.857 Retractor Blade Driver
03.809.900 Retractor Handle
Retractor Blades, 3 ea.
03.809.903 40 mm
03.809.904 50 mm
03.809.905 60 mm
03.809.906 70 mm
03.809.907 80 mm
03.809.908 90 mm
03.809.909 100 mm
03.809.910 110 mm
03.809.911 120 mm
03.809.912 130 mm
03.809.913 140 mm
03.809.914 50 mm
03.809.915 160 mm
03.809.918 Retractor Blade Extension, 3 ea.
03.809.919 Retractor Intradiscal Anchor, 2 ea.
03.809.923 Retractor Extension Driver
03.809.943 Retractor Pin, 3 ea.
03.809.973 Bayoneted Scalpel Handle
03.809.974 Bipolar Forceps
03.809.975 Long Suction Instrument
03.809.977 Soft Tissue Retractor, 6 mm
03.820.101 Self-Retaining Screwdriver
388.14 Socket Wrench with straight handle,
 6 mm width across flats
389.713 Blunt Dissector, 6 mm/7 mm
Oracle Discectomy Instrument Set (01.809.003)

Graphic Case	03.809.870	Oracle Curette, bayoneted, 90°, up-biting, 5.5 mm cup width
Graphic Case	03.809.872	Oracle Ring Curette, bayoneted, 8 mm tip width
Graphic Case	03.809.873	Oracle Ring Curette, bayoneted, 6 mm tip width
Graphic Case	394.951	Quick Release T-Handle, 2 ea.

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.605.001</td>
<td>Disc Rongeur, straight, without teeth, 4 mm width, 330 mm length</td>
</tr>
<tr>
<td>03.605.002</td>
<td>Disc Rongeur, straight, without teeth, 6 mm width, 330 mm length</td>
</tr>
<tr>
<td>03.605.004</td>
<td>Endplate Elevator, 20 mm width, 430 mm length</td>
</tr>
<tr>
<td>03.809.819</td>
<td>9 mm height</td>
</tr>
<tr>
<td>03.809.821</td>
<td>11 mm height</td>
</tr>
<tr>
<td>03.809.823</td>
<td>13 mm height</td>
</tr>
<tr>
<td>03.809.825</td>
<td>15 mm height</td>
</tr>
<tr>
<td>03.809.827</td>
<td>17 mm height</td>
</tr>
<tr>
<td>03.809.829</td>
<td>9 mm height</td>
</tr>
<tr>
<td>03.809.831</td>
<td>11 mm height</td>
</tr>
<tr>
<td>03.809.833</td>
<td>13 mm height</td>
</tr>
<tr>
<td>03.809.835</td>
<td>15 mm height</td>
</tr>
<tr>
<td>03.809.837</td>
<td>17 mm height</td>
</tr>
<tr>
<td>03.809.861</td>
<td>straight up</td>
</tr>
<tr>
<td>03.809.862</td>
<td>forward biting</td>
</tr>
<tr>
<td>03.809.863</td>
<td>straight down</td>
</tr>
<tr>
<td>03.809.864</td>
<td>up-biting</td>
</tr>
<tr>
<td>03.809.865</td>
<td>straight up,</td>
</tr>
<tr>
<td>03.809.866</td>
<td>forward biting,</td>
</tr>
<tr>
<td>03.809.867</td>
<td>straight down,</td>
</tr>
<tr>
<td>03.809.868</td>
<td>up-biting</td>
</tr>
<tr>
<td>03.809.869</td>
<td>Oracle Curette, bayoneted, 90°, up-biting, 7.5 mm cup width</td>
</tr>
</tbody>
</table>
Oracle Insertion Instrument Set (01.809.004)

Graphic Case
- **60.809.004** Graphic Case, for Oracle Spacer System Insertion Instruments

Instruments
- **Oracle Trial Spacers, 0°**
 - 03.809.229 9 mm height
 - 03.809.231 11 mm height
 - 03.809.233 13 mm height
 - 03.809.235 15 mm height
 - 03.809.237 17 mm height

- **Oracle Trial Spacers, 8°**
 - 03.809.629 9 mm height
 - 03.809.631 11 mm height
 - 03.809.633 13 mm height
 - 03.809.635 15 mm height
 - 03.809.637 17 mm height

- **03.809.849** Oracle Rasp
- **03.809.874** Oracle Implant Holder

- **Oracle Spreaders**
 - 03.809.875 9 mm height
 - 03.809.876 11 mm height
 - 03.809.877 13 mm height

- **03.809.881** Oracle Impactor
- **03.809.921** Oracle Lateral Quick Inserter/Distractor
- **03.809.930** Inline Handle, with quick release and sport grip, 2 ea.
- **03.809.940** Oracle Implant Remover
- **03.809.972** Oracle Slap Hammer
<table>
<thead>
<tr>
<th>Stability System (01.809.018)</th>
</tr>
</thead>
</table>

Graphic Case
- 60.809.012 Graphic Case, for Stability System

Instruments
- 03.612.031 Fiber Optic Light Cable
- 03.809.941 Universal Arm
- 03.809.942 Table Clamp for Universal Arm
Also Available

Sets
- 01.612.100 MIS Support System
- 01.605.500 Minimally Invasive Posterior Instrument Set
- 01.605.600 ProPrep Disc Preparation Set

Kit
- 03.809.002S Oracle Neuromonitoring Kit, sterile

Instruments
- 03.809.809 Oracle Broach
- 03.809.858 Small Adjacent Dilator
- 03.809.859 Large Adjacent Dilator
- 03.809.860 Tissue Dissector
- PDL102 Slotted Mallet

Accessories
- 03.809.925S Oracle Retractor Light Clip, sterile

Implants
- **Oracle Spacers, 0° angle**
 - 08.809.209 40 mm x 22 mm, 9 mm height
 - 08.809.211 40 mm x 22 mm, 11 mm height
 - 08.809.213 40 mm x 22 mm, 13 mm height
 - 08.809.215 40 mm x 22 mm, 15 mm height
 - 08.809.217 40 mm x 22 mm, 17 mm height
 - 08.809.269 55 mm x 22 mm, 9 mm height
 - 08.809.271 55 mm x 22 mm, 11 mm height
 - 08.809.273 55 mm x 22 mm, 13 mm height
 - 08.809.275 55 mm x 22 mm, 15 mm height
 - 08.809.277 55 mm x 22 mm, 17 mm height
- **Oracle Spacers, 8° angle**
 - 08.809.609 40 mm x 22 mm, 9 mm height
 - 08.809.611 40 mm x 22 mm, 11 mm height
 - 08.809.613 40 mm x 22 mm, 13 mm height
 - 08.809.615 40 mm x 22 mm, 15 mm height
 - 08.809.617 40 mm x 22 mm, 17 mm height
 - 08.809.669 55 mm x 22 mm, 9 mm height
 - 08.809.671 55 mm x 22 mm, 11 mm height
 - 08.809.673 55 mm x 22 mm, 13 mm height
 - 08.809.675 55 mm x 22 mm, 15 mm height
 - 08.809.677 55 mm x 22 mm, 17 mm height