Advanced Plating System for Trauma, Microvascular Reconstruction, and Orthognathic Surgery

2.0 mm Mandible Locking Plate System

Surgical Technique
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 mm Mandible Locking Plate System</td>
<td>2</td>
</tr>
<tr>
<td>Indications</td>
<td>4</td>
</tr>
<tr>
<td>SURGICAL TECHNIQUE</td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>5</td>
</tr>
<tr>
<td>Contour Plate</td>
<td>6</td>
</tr>
<tr>
<td>Position Plate</td>
<td>7</td>
</tr>
<tr>
<td>Insert Screws</td>
<td>9</td>
</tr>
<tr>
<td>Optional Steps for Bone Resection</td>
<td>10</td>
</tr>
<tr>
<td>PRODUCT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>Implants</td>
<td>11</td>
</tr>
<tr>
<td>Modules and Contents</td>
<td>15</td>
</tr>
</tbody>
</table>

MR Information
The 2.0 mm Mandible Locking Plate System has not been evaluated for safety and compatibility in the MR environment. It has not been tested for heating, migration or image artifact in the MR environment. The safety of the 2.0 mm Mandible Locking Plate System in the MR environment is unknown. Scanning a patient who has this device may result in patient injury.
Advanced plating system for trauma, microvascular reconstruction, and orthognathic surgery:

- Provides locked or nonlocked, self-drilling or self-tapping 2.0 mm screw and plate fixation
- Single implant system addresses a broad range of indications
- Low-profile plating system minimizes implant palpability
- An addition to the mandibular modular fixation system (MMFS)—supported by existing instrumentation
- Manufactured in titanium for biocompatibility

The locking design

- Increases construct stability
- Decreases risk of screw back-out and subsequent loss of reduction
- Reduces the need for precise anatomic plate contouring
- Minimizes the risk of stripped screw holes
- Provides a positive stop for locking screws when using the DePuy Synthes battery powered screwdriver
- Preserves reduction intraoperatively by maintaining plate-to-bone position

Locking screws (with PlusDrive® Recess)

- Available in self-drilling or self-tapping designs
- Special double-lead threads beneath the screw head engage and lock into the threaded plate holes, eliminating the need for two-piece locking screws
- One size (2.0 mm) screw fits all 2.0 mm mandible locking plate (MLP) configurations
- Manufactured from high-strength titanium alloy*
- Locking screws are color-coded blue for ease of identification

PlusDrive Recess

- Improves retention with screwdriver blade**
- Reduces stripping and cam-out**
- Provides off-axis screw placement ability**

*Ti-6Al-7Nb
**Data on file at DePuy Synthes
2.0 mm Mandible Locking Plate System

Locking plates
- Four profiles accommodate a wide range of indications
- Available in a wide variety of straight, angled, and curved styles
- Malleable 4- and 6-hole miniplates are available to simplify external oblique ridge application
- Hole spacing is designed to optimize fixation in reconstructive surgery
- Design facilitates rapid three-dimensional contouring for improved anatomic fit

![Miniplates for simple trauma; intermediate, large, and extra plates for less stable trauma and microvascular reconstruction applications.](image)

![Malleable 4-hole miniplate applied to a simple angle fracture](image)

![Threaded plate holes accept both nonlocking and locking 2.0 mm PlusDrive Screws. Nonlocking screws allow a maximum of 13°–18° of angulation from central axis.*](image)

Data on file at DePuy Synthes
The 2.0 mm mandible locking plate system is indicated for:

- Trauma
- Reconstructive surgery
- Orthognathic surgery

Warnings:
- These devices can break intraoperatively when subjected to excessive forces or used outside the recommended surgical technique. While the surgeon must make the final decision on removal of the broken part based on the associated risk in doing so, we recommend that whenever possible and practical for the individual patient, the broken part be removed.
- Be aware that implants are not as strong as native bone. Implants subjected to substantial loads may fail.

Precaution: Check instruments for wear or damage before starting surgery.
1
Expose and reduce fracture

After completing the preoperative plan, expose the fracture or osteotomy site. For trauma, reduce the fracture as required.

2
Select and prepare implants

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>391.965</td>
<td>Combination Bending/Cutting Pliers, for 1.0 mm–2.0 mm plates</td>
</tr>
<tr>
<td>391.967</td>
<td>Shortcut Plate Cutters</td>
</tr>
</tbody>
</table>

Select the appropriate plate depending on the indication. Orient the plate so the topside (indicated by the laser etch) is facing out.

Notes:
• In case of trauma, at least three screws should be inserted on each side of the fracture.
• In case of tumor resection, at least four screws should be inserted on each side of the defect.

Cut to length, if necessary. Mini and intermediate plates may be cut using the combination bending/cutting pliers. Large plates may be cut using the shortcut plate cutters.

Determine the appropriate screw type.

Precautions:
• Instrument tips and implant edges may be sharp; handle with care and dispose of sharp cuttings in an approved sharps container.
• Take care to protect soft tissue from trimmed plate edges.
3 Contour the plate

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.143</td>
<td>Combination Bending Pliers, for 2.0 mm Mandible Locking Plate Bender/Cutter</td>
</tr>
<tr>
<td>347.964</td>
<td>Combination Bending Pliers, for 1.0 mm–2.0 mm plates</td>
</tr>
<tr>
<td>391.965</td>
<td>Combination Bending/Cutting Pliers, for 1.0 mm–2.0 mm plates</td>
</tr>
</tbody>
</table>

Contour the plate to match the anatomy. An exact match is not required when using locking screws, because plate stability is not dependent on plate-to-bone contact when screws are locked.

Mini and intermediate plates can be contoured using the combination bending/cutting pliers and combination bending pliers.

Large plates can be contoured using the combination bending pliers. (Bending pliers are used for torsional bending.)

Precautions:

- Avoid reverse bends as it may weaken the plate and lead to premature implant failure.
- Avoid sharp bends. Sharp bends include a single out-of-plane bend of >30 degrees between two adjacent holes.
2.0 mm Mandible Locking Plate System Surgical Technique DePuy Synthes

Position the plate

Instrument

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>398.66</td>
<td>Plate Holding Forceps</td>
</tr>
</tbody>
</table>

Place the plate over the fracture or osteotomy site. Use the plate holding forceps to secure the plate to the bone, if desired.

Precaution: Avoid placing the holes over the nerve or tooth root. If plate requires placement over nerve or tooth root, drill monocortically using the appropriate drill bit with stop.

Notes:
- In case of trauma, at least three screws should be inserted on each side of the fracture.
- In case of tumor resection, at least four screws should be inserted on each side of the defect.

Drill the first hole (optional)
(omit for self-drilling screws)

Instrument

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>312.155</td>
<td>1.5 mm Drill Guide</td>
</tr>
</tbody>
</table>

Select the appropriate drill guide (standard or threaded) and insert it into the first plate hole nearest the fracture or osteotomy site.

The standard 1.5 mm drill guide is used with nonlocking screws or when good visualization is possible. When using the standard drill guide, for locking screws, ensure that it is centered in all planes to properly align the screw’s locking threads in the plate.

Precaution:
- Avoid placing the holes over the nerve or tooth root. If plate requires placement over nerve or tooth root, drill monocortically using the appropriate drill bit with stop.
5. Drill the first hole (optional) continued

- Drill speed rate should never exceed 1,800 rpm, particularly in dense, hard bone. Higher drill speed rates can result in:
 - thermal necrosis of the bone,
 - soft tissue burns,
 - an oversized hole, which can lead to reduced pull-out force, increased ease of the screws stripping in bone, suboptimal fixation, and/or the need for emergency screws.
- Avoid damaging the plate threads with the drill.
- Always irrigate during drilling to avoid thermal damage to the bone.
- Always irrigate and apply suction for removal of debris potentially generated during implantation or removal.

Alternative instrument

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>312.154</td>
<td>1.5 mm Threaded Drill Guide</td>
</tr>
<tr>
<td>312.156</td>
<td>1.5 mm Threaded Drill Guide (small head)</td>
</tr>
</tbody>
</table>

When using the 1.5 mm threaded drill guide, rotate the drill guide clockwise to engage the threads in the plate.

Drill using the 1.5 mm drill bit.

Note: The threaded drill guides may be used through a DePuy Synthes trocar. It acts as a plate holder when the threads are engaged in the plate.

6

Measure screw length

Instrument

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>319.52</td>
<td>Depth Gauge</td>
</tr>
</tbody>
</table>

Determine the appropriate screw length using a depth gauge.
INSERT SCREWS

7 Insert the screw

<table>
<thead>
<tr>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>313.251</td>
</tr>
</tbody>
</table>

Insert the proper length 2.0 mm locking or nonlocking screw through the plate and tighten until secure.

Note: To engage the PlusDrive Screw Recess on the screwdriver blade, align the blade over the PlusDrive Screw Recess and slowly rotate it until the blade drops into the recess. Firmly press the blade to fully seat it in the screw.

Precaution: Tighten screws in a controlled manner. Applying too much torque to the screws may cause screw/plate deformation or bone stripping.

Notes:
- To disengage the PlusDrive Screw Recess, gently rock the screwdriver blade side-to-side to release the blade from the screw head.
- In areas of dense cortical bone or in cases of extreme comminution, predrilling for self-drilling screws is recommended.

8 Place the remaining screws

Insert the second screw on the opposite side of the fracture or osteotomy site, and then all remaining screws, following the previously outlined procedure.

Securely tighten all screws unless resection is to follow.

Note: Tension band plate applied to complete construct.
OPTIONAL STEPS FOR BONE RESECTION

9
Resect the mandible

Once the plate is in place, remove the plate and screws, taking note of each screw's placement.

Resect the mandible.

10
Replace the implants

Place the plate back onto the mandible in its original position. Reinsert each predetermined screw. Check all screws to ensure a secure fit in the plate.

11
Apply bone graft

A vascularized bone graft must be applied to all 2.0 mm constructs used in reconstructing the mandible.*

Precaution: If a vascularized bone graft is not being applied, a 2.4 mm or larger system should be used.

* Plate fractures are possible when any plate bears the entire functional load for extended periods. Therefore the implantation of a bone graft immediately, or at a later date, is necessary to support the construct.

2.0 MM TITANIUM MINI MANDIBLE LOCKING PLATES
(1.0 MM THICK)

4 holes, narrow, malleable
447.046

6 holes, narrow, malleable
447.047

4 holes, narrow
447.048

6 holes, narrow
447.049

12 holes, adaption
447.050

20 holes, adaption
447.051

4 holes, tension band
447.053

4 holes, broad
447.055

4 holes, broad, curved
447.057

Pre-Bent Tension Band Plate,
4 holes, right*
447.304

Pre-Bent Tension Band Plate,
4 holes, left*
447.305

Box Plate, malleable*
447.310

Double Wide Plate,
9 holes, malleable*
447.309

Double Wide Plate,
12 holes, malleable*
447.308

Strut Plate, 8 holes, malleable*
447.312

Double Y-Plate, malleable*
447.317

L-Plate, malleable,
right*
447.318

L-Plate, malleable, left*
447.319

Curved Strut Plate, 8 holes, malleable*
447.315

*Large Module Only
2.0 MM TITANIUM INTERMEDIATE MANDIBLE LOCKING PLATES (1.25 MM THICK)

6 holes
447.101

12 holes
447.102

Compression Plate,
4 holes*
447.204

Compression Plate,
5 holes*
447.205

Compression Plate,
6 holes*
447.206

Compression Plate,
8 holes*
447.208

Angle Compression Plate,
6 holes*
447.210

Angle Compression Plate,
8 holes*
447.212

Crescent Plate,
5 holes*
447.215

Crescent Plate,
7 holes*
447.217

*Large Module Only
2.0 MM TITANIUM LARGE MANDIBLE LOCKING PLATES (VARIOUS THICKNESSES)

- 3 x 3 holes
 - 447.103

- 6 holes
 - 447.104

- 12 holes
 - 447.105

- 20 holes
 - 447.106

- 6 x 21 holes, right
 - 447.108

- 6 x 21 holes, left
 - 447.109

- 3 x 3 holes, crescent
 - 447.117

- 3 x 3 holes, angled
 - 447.118

- Double Angle Plate, 6 x 24 x 6 holes*
 - 447.406

*Large Module Only
2.0 MM TITANIUM MANDIBLE LOCKING PLATES, EXTRA (2.0 MM THICK)

12 holes*
447.412

20 holes*
447.420

6 x 21 holes, right*
447.422

6 x 21 holes, left*
447.423

Double Angle Plate, 4 x 20 x 4 holes*
447.424

Double Angle Plate, 5 x 22 x 5 holes*
447.425

Double Angle Plate, 6 x 24 x 6 holes*
447.426

*Large Module Only
2.0 MM MANDIBLE LOCKING PLATE SYSTEM

Module Options*

304.744 Module Case, for 2.0 mm Titanium Mandible Locking Plate Set (includes base, lid, and standard plate insert tray)
304.765 Insert Tray, for Double Angle Plates (for 304.744)
304.766 Insert Tray, for Specialty Plates (for 304.744)
304.767 Insert Tray, for Compression Plates (for 304.744)
304.673 2.0 mm Mandible Locking Plate Module (small)

Screw Part Number Inserts

304.700T27 for 401.354–401.374
304.700T35 for 401.386–401.398
304.700T46 for 401.845–401.848
306.791 for 401.291–401.299
306.792 for 401.041–401.052
306.793 for 401.955–401.957
306.794 for 401.061–401.065
306.795 for 401.791–401.799

Screw Length Markers

304.105– for 5 mm–18 mm screws
304.118
304.105W– for 5 mm–8 mm self-drilling screws
304.108W

*Contents ordered separately

For detailed cleaning and sterilization instructions, please refer to www.synthes.com/cleaning-sterilization or sterilization instructions, if provided.
Titanium Screws for 2.0 mm Mandible Locking Plates

Screws with PlusDrive Recess

- 401.041 – 2.0 mm Titanium Cortex Screws, self-tapping, 4 mm, 5 mm, 6 mm and 8 mm (5/pkg.)
- 401.044 – 2.0 mm Titanium Cortex Screws, coarse pitch
- 401.052 – self-tapping, 10 mm–24 mm (5/pkg.)
- 401.061 – 2.0 mm Titanium Cortex Screws, self-drilling, 4 mm, 5 mm, 6 mm, 7 mm and 8 mm (5/pkg.)
- 401.291 – 2.0 mm Titanium Locking Screws, self-tapping, 5 mm–18 mm (5/pkg.)
- 401.299 – 2.0 mm Titanium Locking Screws, self-drilling, 5 mm, 6 mm and 8 mm (5/pkg.)
- 401.955 – 2.0 mm Titanium Locking Screws, self-drilling, 5 mm–18 mm (1/pkg.)
- 401.957 – 2.0 mm Titanium Locking Screws, self-drilling, 5 mm, 6 mm and 8 mm (1/pkg.)
- 401.791E – 2.4 mm Titanium Emergency Screws
- 401.799E – 5 mm–18 mm (1/pkg.)

Mandible Locking Plates (MLP)

- 2.0 mm Titanium Mini Mandible Locking Plates
- 447.046 – 4 holes, narrow, malleable
- 447.047 – 6 holes, narrow, malleable
- 447.048 – 4 holes, narrow
- 447.049 – 6 holes, narrow
- 447.050 – 12 holes, adaption*
- 447.051 – 20 holes, adaption
- 447.053 – 4 holes, tension band
- 447.055 – 4 holes, broad
- 447.057 – 4 holes, broad, curved,
- 447.304 – Pre-Bent Tension Band Plate, 4 holes, right*
- 447.305 – Pre-Bent Tension Band Plate, 4 holes, left*
- 447.308 – Double Wide Plate, 12 holes, malleable*
- 447.309 – Double Wide Plate, 9 holes, malleable*
- 447.310 – Box Plate, malleable*
- 447.312 – Strut Plate, 8 holes, malleable*
- 447.315 – Curved Strut Plate, 8 holes, malleable*
- 447.317 – Double Y-Plate, malleable*
- 447.318 – L-Plate, malleable, right*
- 447.319 – L-Plate, malleable, left*

*Large Module only
2.0 mm Mandible Locking Plate System

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 mm Titanium Intermediate Mandible Locking Plates</td>
<td></td>
</tr>
<tr>
<td>447.101</td>
<td>6 holes</td>
</tr>
<tr>
<td>447.102</td>
<td>12 holes</td>
</tr>
<tr>
<td>447.204</td>
<td>Compression Plate, 4 holes*</td>
</tr>
<tr>
<td>447.205</td>
<td>Compression Plate, 5 holes*</td>
</tr>
<tr>
<td>447.206</td>
<td>Compression Plate, 6 holes*</td>
</tr>
<tr>
<td>447.208</td>
<td>Compression Plate, 8 holes*</td>
</tr>
<tr>
<td>447.210</td>
<td>Angle Compression Plate, 6 holes*</td>
</tr>
<tr>
<td>447.212</td>
<td>Angle Compression Plate, 8 holes*</td>
</tr>
<tr>
<td>447.215</td>
<td>Crescent Plate, 5 holes*</td>
</tr>
<tr>
<td>447.217</td>
<td>Crescent Plate, 7 holes*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 mm Titanium Large Mandible Locking Plates</td>
<td></td>
</tr>
<tr>
<td>447.103</td>
<td>3 x 3 holes</td>
</tr>
<tr>
<td>447.104</td>
<td>6 holes</td>
</tr>
<tr>
<td>447.105</td>
<td>12 holes</td>
</tr>
<tr>
<td>447.106</td>
<td>20 holes</td>
</tr>
<tr>
<td>447.108</td>
<td>6 x 21 holes, right</td>
</tr>
<tr>
<td>447.109</td>
<td>6 x 21 holes, left</td>
</tr>
<tr>
<td>447.117</td>
<td>3 x 3 holes, crescent</td>
</tr>
<tr>
<td>447.118</td>
<td>3 x 3 holes, angled</td>
</tr>
<tr>
<td>447.119</td>
<td>4 x 4 holes, angled</td>
</tr>
<tr>
<td>447.404</td>
<td>Double Angle Plate, 4 x 20 x 4 holes*</td>
</tr>
<tr>
<td>447.405</td>
<td>Double Angle Plate, 5 x 22 x 5 holes*</td>
</tr>
<tr>
<td>447.406</td>
<td>Double Angle Plate, 6 x 24 x 6 holes*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 mm Titanium Mandible Locking Plates, extra</td>
<td></td>
</tr>
<tr>
<td>447.412</td>
<td>12 holes*</td>
</tr>
<tr>
<td>447.420</td>
<td>20 holes*</td>
</tr>
<tr>
<td>447.422</td>
<td>Right, 6 x 21 holes*</td>
</tr>
<tr>
<td>447.423</td>
<td>Left, 6 x 21 holes*</td>
</tr>
<tr>
<td>447.424</td>
<td>Double Angle Plate, 4 x 20 x 4 holes*</td>
</tr>
<tr>
<td>447.425</td>
<td>Double Angle Plate, 5 x 22 x 5 holes*</td>
</tr>
<tr>
<td>447.426</td>
<td>Double Angle Plate, 6 x 24 x 6 holes*</td>
</tr>
</tbody>
</table>

*Large Module only
Bending Templates

For 2.0 mm Titanium Mini Mandible Locking Plates

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.528</td>
<td>20 holes, adaption</td>
</tr>
<tr>
<td>329.529</td>
<td>6 holes, narrow</td>
</tr>
</tbody>
</table>

For 2.0 mm Titanium Intermediate Mandible Locking Plates

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.525</td>
<td>6 holes</td>
</tr>
<tr>
<td>329.527</td>
<td>12 holes</td>
</tr>
<tr>
<td>329.571</td>
<td>5 and 7 holes, crescent</td>
</tr>
<tr>
<td>329.572</td>
<td>6 and 8 holes, angle compression</td>
</tr>
<tr>
<td>329.573</td>
<td>4, 6 and 8 holes, compression</td>
</tr>
</tbody>
</table>

For 2.0 mm Titanium Large and Extra Mandible Locking Plates

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.521</td>
<td>6 x 21 holes, right</td>
</tr>
<tr>
<td>329.522</td>
<td>4 x 4 holes, angled</td>
</tr>
<tr>
<td>329.523</td>
<td>3 x 3 holes, crescent</td>
</tr>
<tr>
<td>329.524</td>
<td>20 holes</td>
</tr>
<tr>
<td>329.526</td>
<td>3 x 3 holes</td>
</tr>
<tr>
<td>329.530</td>
<td>6 x 21 holes, left</td>
</tr>
<tr>
<td>329.574</td>
<td>4 x 20 x 4 holes, double angle*</td>
</tr>
<tr>
<td>329.575</td>
<td>5 x 22 x 5 holes, double angle*</td>
</tr>
<tr>
<td>329.576</td>
<td>6 x 24 x 6 holes, double angle*</td>
</tr>
</tbody>
</table>

* Large Module only
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>311.204</td>
<td>Tap for 2.0 mm Mandible Locking Screws, 100 mm</td>
</tr>
<tr>
<td>312.154</td>
<td>1.5 mm Threaded Drill Guide, long,</td>
</tr>
<tr>
<td></td>
<td>for 2.0 mm Mandible Locking Plates</td>
</tr>
<tr>
<td>312.155</td>
<td>1.5 mm Drill Guide, for 2.0 mm Mandible Locking Plates</td>
</tr>
<tr>
<td>312.156</td>
<td>1.5 mm Threaded Drill Guide for 2.0 mm</td>
</tr>
<tr>
<td></td>
<td>Mandible Locking Plates</td>
</tr>
<tr>
<td>313.251</td>
<td>1.5 mm/2.0 mm Screwdriver, self-retaining</td>
</tr>
<tr>
<td></td>
<td>1.5 mm/2.0 mm Screwdriver Blades, self-retaining, PlusDrive Screw</td>
</tr>
<tr>
<td>313.252</td>
<td>96 mm, hex coupling</td>
</tr>
<tr>
<td>313.253</td>
<td>76 mm, hex coupling</td>
</tr>
<tr>
<td>313.254</td>
<td>52 mm, hex coupling</td>
</tr>
<tr>
<td></td>
<td>2.0 mm Cruciform Screwdriver Blades with Spring Holding Sleeve</td>
</tr>
<tr>
<td>314.672</td>
<td>Short, mini quick coupling</td>
</tr>
<tr>
<td>314.673</td>
<td>Long, mini quick coupling</td>
</tr>
<tr>
<td>314.675</td>
<td>Short, hex coupling</td>
</tr>
<tr>
<td>314.684</td>
<td>Long, hex coupling</td>
</tr>
<tr>
<td>317.435</td>
<td>1.5 mm Drill Bits, J-latch</td>
</tr>
<tr>
<td>317.835</td>
<td>60 mm stop, 85 mm</td>
</tr>
<tr>
<td>317.836</td>
<td>110 mm</td>
</tr>
<tr>
<td>317.836</td>
<td>125 mm</td>
</tr>
<tr>
<td>319.52</td>
<td>Depth Gauge</td>
</tr>
<tr>
<td>329.142</td>
<td>Combination Bending Pliers, for 2.0 mm–2.4 mm plates</td>
</tr>
<tr>
<td>329.146</td>
<td>Mandible Plate Bender/Cutter</td>
</tr>
<tr>
<td>329.147</td>
<td>Mandible Plate Bender/Cutter with Rollers</td>
</tr>
<tr>
<td>347.964</td>
<td>Combination Bending Pliers, for 1.0 mm–2.0 mm plates</td>
</tr>
<tr>
<td>391.965</td>
<td>Combination Bending/Cutting Pliers, for 1.0 mm–2.0 mm plates</td>
</tr>
<tr>
<td>391.967</td>
<td>Shortcut Plate Cutters</td>
</tr>
<tr>
<td>397.440</td>
<td>1.5 mm Threaded Drill Guide, short,</td>
</tr>
<tr>
<td></td>
<td>for 2.0 mm Mandible Locking Plates</td>
</tr>
<tr>
<td>398.66</td>
<td>Plate Holding Forceps</td>
</tr>
</tbody>
</table>
Limited Warranty and Disclaimer: DePuy Synthes products are sold with a limited warranty to the original purchaser against defects in workmanship and materials. Any other express or implied warranties, including warranties of merchantability or fitness, are hereby disclaimed. Please also refer to the package insert(s) or other labeling associated with the devices identified in this surgical technique for additional information. CAUTION: Federal Law restricts these devices to sale by or on the order of a physician. Some devices listed in this surgical technique may not have been licensed in accordance with Canadian law and may not be for sale in Canada. Please contact your sales consultant for items approved for sale in Canada. Not all products may currently be available in all markets.