Surgical Technique
Table of contents

Indications 2

Implants 3

Instruments 4

Surgical technique 5

Implant removal 11

MRI Information 12

Warning
This description alone does not provide sufficient background for direct use of DePuy Synthes products. Instruction by a surgeon experienced in handling these products is highly recommended.

Processing, Reprocessing, Care and Maintenance
For general guidelines, function control and dismantling of multi-part instruments, as well as processing guidelines for implants, please contact your local sales representative or refer to:
http://emea.depuysynthes.com/hcp/reprocessing-care-maintenance
For general information about reprocessing, care and maintenance of Synthes reusable devices, instrument trays and cases, as well as processing of Synthes non-sterile implants, please consult the Important Information leaflet (SE_023827) or refer to:
http://emea.depuysynthes.com/hcp/reprocessing-care-maintenance
Indications

- Distal articular fractures of the tibia (pilon fractures) with emphasis on complex articular reconstruction
Implants

Plates
– LCP Pilon Plate 2.7/3.5, cruciform, 7-hole shaft (X40.082)
– LCP Pilon Plate 2.7/3.5, cruciform, 9-hole shaft (X40.083)

LCP locking screws
– LCP Locking Screw Ø 2.7 mm, self-tapping (X02.920–960)
– LCP Locking Screw Stardrive® Ø 2.7 mm, self-tapping (X03.920–960)
– LCP Locking Screw Ø 3.5 mm, self-tapping (X13.010–060)
– LCP Locking Screw Stardrive® Ø 3.5 mm, self-tapping (X12.101–124)

Standard screws
– Cortex Screw Ø 2.7 mm, self-tapping (X02.820–860)
– Cortex Screw Ø 3.5 mm, self-tapping (X04.810–860)
– Cancellous Screw Ø 4.0 mm, (X07.010–060)
Instruments

Bending template
- Bending Template for Nos. X40.082 and X40.083 (329.915)

Cutting instruments
- Cutting Pliers for Plates (391.931)
- Cutting Pliers with Positioning Pin (329.151)

Bending instruments
- Bending Pin for LCP Plates 3.5, with thread (329.916)
- Bending Pliers for Plates (391.963)
- Bending Iron for LCP Pilon Plates 2.7/3.5, length 190 mm (329.095)

Note: The required LCP standard instruments and the required small fragment instruments are not listed.
1 Surgical access
Preferably use the anterior or medial access. Where appropriate, the anterior access may be combined with a posteromedial access.

2 Visualise joint
Visualise the joint fracture by means of an arthrotomy and distraction. If necessary apply a tibio-talar femoral distractor.

3 Reduce fracture
Reduce the fragments anatomically and fix temporarily using Kirschner wires or with definitive free screws.

4 Cut plate
Use the Cutting Pliers for Plates (391.931) for cutting the distal arms. Cut the distal arms in accordance with the positioning of the plate onto the bone.

The Cutting Pliers with Positioning Pin (329.151) must be used for the definitive adaptation of the plate and for rounding off the cut surfaces.
5
Contour the distal end of the plate

Use the Bending Pins (329.916) to contour the distal arms and distal end of the plate to match the shape of the bending template. Only insert pins next to each other. Alternatively, contour the plate using the Bending Pliers (391.963) or Bending Irons (329.095).

Note: Bend the plate between the threaded holes to avoid damage to the thread. Do not bend the plate repeatedly back and forth.
6 Contour plate shaft
Use bending irons to contour the shaft. Do not use the bending pins.

7 Position plate
Position and adapt the plate such that the distal screws can be inserted as subchondrally as possible.

8 Provisionally fix plate
Before inserting the first LCP locking screw, ensure that the plate shows good provisional fixation.

9 Determine screw type and diameter
Select LCP Locking Screws ø 2.7 mm (X02.920–960) or ø 3.5 mm (X13.010–060), or Cortex Screws ø 2.7 mm (X02.820–860) or ø 3.5 mm (X04.810–860). A combination of all screw types is possible.

Alternative
Cancellous Bone Screws ø 4.0 mm (X07.010–060) may also be used.

If both cortex and LCP locking screws are used in one plate, the cortex screws must be inserted first. This ensures that the plate is compressed against the bone before the LCP locking screws are inserted.

Note: For reasons of stability, only use the LCP locking screws ø 2.7 mm and the cortex screws ø 2.7 mm in the distal section of the plate (round threaded holes).
10

Predrill screw holes

a. When predrilling for **standard screws** with the Universal Drill Guide (323.260 or 323.360) and the matching bit, pre-drill the screw hole neutrally (1) or off-centre (2).

Use the following bits:
- For cortex screw Ø 2.7 mm: Drill Bit Ø 2.0 mm (310.190 or 310.210)
- For cortex screw Ø 3.5 mm and cancellous bone screw Ø 4.0 mm (alternative): Drill Bit Ø 2.5 mm (310.230 or 310.250)

Note: When using a cortex screw Ø 2.7 mm or 3.5 mm as a lag screw, predrill the cortex of the nearby fragment with a larger bit (Drill Bit Ø 2.7 mm [310.260] for cortex screw Ø 2.7 mm; Drill Bit Ø 3.5 mm [310.350] for cortex screw Ø 3.5 mm).

b. When predrilling for **LCP locking screws**, screw the LCP Drill Sleeve 2.7 mm (312.922) or 3.5 mm (323.027) into the desired threaded hole until the sleeve is fully gripped by the thread.

The LCP drill sleeve ensures that the LCP locking screw is locked in the plate in the correct alignment. The angular stability is reduced if the LCP locking screws are inserted obliquely.

Note: Do not bend the plate with the drill sleeve as this may damage the sleeve. Predrill the screw hole with a suitable bit.

Use the following drill bits:
- For LCP locking screw Ø 2.7 mm: Drill Bit Ø 2.0 mm (310.190 or 310.210)
- For LCP locking screw Ø 3.5 mm: Drill Bit Ø 2.8 mm (310.284)

Note: Select the plate holes and screw lengths used in the contoured distal arm of the plate in such a way as to avoid collision of screws.
11
Determine screw length
Determine the screw length with the Depth Gauge (319.010).

12
Insert standard screws
Insert the cortex screws with the small, hexagonal Screw-driver Ø 2.5 mm (314.020).
13

Insert LCP locking screws

a. To insert the LCP locking screws **mechanically**, attach the Torque Limiter 1.5 Nm (511.770) to the power tool unit (Compact Air Drive 511.701 or Power Drive 530.100). Insert the Hexagonal Screwdriver Shaft (314.030) or the Screwdriver Shaft Stardrive 3.5 (314.116) into the torque limiter. Pick up the LCP locking screw and insert it into the plate hole. To insert the screw, start the power tool unit slowly, increase the speed and then reduce again before the screw is fully tightened. The torque is automatically limited and a clearly audible click signifies that the maximum level has been reached. Stop the power tool unit immediately and disconnect from the screw.

Note: Do not lock the screw at full speed as this risks damaging the hexagonal or Stardrive recess, making implant removal more difficult.

Ensure that adequate cooling is provided when inserting fairly long screws into thick cortical bone.

With porous bone there is a risk that the LCP locking screw fails to follow the predrilled hole, resulting in a slightly oblique hole during mechanical insertion of the screw with subsequent partial loss of angular stability. In case of porous bone, manual locking (with the handle for torque limiter) of the screws is recommended to ensure better guidance through the predrilled hole.

b. To insert the LCP locking screws **manually**, attach the torque limiter 1.5 Nm to the Handle for Torque Limiter (397.705) and insert the screwdriver shaft.

Lock the LCP locking screws in the plate.
To remove the plate, first unlock all screws before removing them definitively in a second step, otherwise the plate may rotate while the last screw is being removed and cause soft tissue damage.

If the screws cannot be removed with the screwdriver (e.g. if the hexagonal or Stardrive recess of the locking screws is damaged or if the screws are stuck in the plate), insert the conical Extraction Screw (309.521) with left-handed thread in the screw head using the T-handle with Quick Coupling (311.440) and loosen the locking screw by turning counterclockwise.
MRI Information

Torque, Displacement and Image Artifacts according to ASTM F 2213-06, ASTM F 2052-06e1 and ASTM F2119-07
Non-clinical testing of worst case scenario in a 3 T MRI system did not reveal any relevant torque or displacement of the construct for an experimentally measured local spatial gradient of the magnetic field of 3.69 T/m. The largest image artifact extended approximately 169 mm from the construct when scanned using the Gradient Echo (GE). Testing was conducted on a 3 T MRI system.

Radio-Frequency-(RF-)induced heating according to ASTM F2182-11a
Non-clinical electromagnetic and thermal testing of worst case scenario lead to peak temperature rise of 9.5 °C with an average temperature rise of 6.6 °C (1.5 T) and a peak temperature rise of 5.9 °C (3 T) under MRI Conditions using RF Coils [whole body averaged specific absorption rate (SAR) of 2 W/kg for 6 minutes (1.5 T) and for 15 minutes (3 T)].

Precautions: The above mentioned test relies on non-clinical testing. The actual temperature rise in the patient will depend on a variety of factors beyond the SAR and time of RF application. Thus, it is recommended to pay particular attention to the following points:
– It is recommended to thoroughly monitor patients undergoing MR scanning for perceived temperature and/or pain sensations.
– Patients with impaired thermo regulation or temperature sensation should be excluded from MR scanning procedures.
– Generally it is recommended to use a MR system with low field strength in the presence of conductive implants. The employed specific absorption rate (SAR) should be reduced as far as possible.
– Using the ventilation system may further contribute to reduce temperature increase in the body.