Modular Intervertebral Disc Prosthesis designed for Stabilizing the Lumbar Spine and Restoring the Physiological Range of Motion

Prodisc-L

Surgical Technique
This description alone does not provide sufficient background for direct use of DePuy Synthes products. Instruction by a surgeon experienced in handling these products is highly recommended.

Processing, Reprocessing, Care and Maintenance

For general guidelines, function control and dismantling of multi-part instruments, as well as processing guidelines for implants, please contact your local sales representative or refer to:

http://emea.depuysynthes.com/hcp/reprocessing-care-maintenance

For general information about reprocessing, care and maintenance of Synthes reusable devices, instrument trays and cases, as well as processing of Synthes non-sterile implants, please consult the Important Information leaflet (SE_023827) or refer to:

http://emea.depuysynthes.com/hcp/reprocessing-care-maintenance
Table of Contents

Introduction
- Prodisc-L 2
- AO Spine Principles 4
- Indications and Contraindications 5
- Kinematics 6

Product Information
- Implants 8
- Instruments 10
- Optional Instruments 17
- Other Synthes Products for Access, Disectomy and Endplate Preparation 20
- Preoperative Planning 22

Surgical Technique 23

Cases
- Case 1: Degenerative disc disease L5/S1 31
- Case 2: Degenerative disc disease L3/L4 and L4/L5 32
- Case 3: Degenerative disc disease L3/L4 – fused segments L4–S1 33

Bibliography 34
A concept from the field of joint endoprosthetics

Extensive experience
• Developed as a result of decades of experience in knee and hip prosthetics
• Over 15,000 implanted Prodisc-L prostheses since 1990
• Polyethylene inlays in conjunction with cobalt-chromium-molybdenum plates have been in clinical use in knee, hip and spinal prosthetics for several decades

Motion preservation
• Retention of the physiological range of motion for flexion/extension, rotation and lateral inclination
• Restoration of the height of the relevant segment, anatomical balance, and the stability of the spinal column
• Guided and controlled motion potentially limits the load on facet joints

Good anatomical fit
• The size of the implant, the lordosis angle and the height of the prosthesis can be interchanged to suit patient anatomy
• Anatomical design of the implant plates

Fixation
• Central keels and spikes provide primary fixation
• Porous titanium-coated implant plates potentially allow for osteointegration
Minimally invasive access

The instruments:
- Narrow, indicated instruments allow short, minimally invasive surgery and therefore earlier patient mobilization
- Trial implants with adjustable stop to prevent excessive posterior positioning
- The keel bed is prepared while the chisel is guided over the trial implant
- The implant is guided into proper position via the chisel cut
- Orientation at the midline for precise implanting
The four principles to be considered as the foundation for proper spine patient management underpin the design and delivery of the Curriculum: Stability – Alignment – Biology – Function.¹,²

Stability
Stabilization to achieve a specific therapeutic outcome

Alignment
Balancing the spine in three dimensions

Biology
Etiology, pathogenesis, neural protection, and tissue healing

Function
Preservations and restoration of function to prevent disability

¹ Aebi et al (1998)
² Aebi et al (2007)
Indications and Contraindications

Prodisc-L implants are used to replace a lumbar intervertebral disc and to restore disc height and segmental motion.

Indications
Lumbar discopathy

Contraindications
- Spinal stenosis, radiculopathy
- Increased segmental instability
- Spinal deformities, spondylololisthesis above 25%
- Radiographic confirmation of severe facet joint disease or degeneration
- Osteoporosis, osteochondrosis, and severe osteopenia
- Acute or chronic systemic, spinal, or localized infections
- Systemic and metabolic diseases
- Any medical and surgical conditions precluding the potential benefit of spinal surgery
- Foreign body sensitivity to the implant materials
- Dependency on pharmaceutical drugs, drug abuse, or alcoholism
- Pregnancy
- Obesity
- Lack of patient cooperation

Patient exclusion recommendations
Patient selection is one of the most important factors contributing to the outcome of the total disc replacement procedure. The following may affect clinical outcomes:
- A condition of senility or mental illness, alcoholism or smoking
- Dependency on pharmaceutical drugs or drug abuse
- The patient’s occupation or activity level
- Compromised vertebral bodies at affected level due to current or past trauma (fractures)
- Substantial loss of disc height, where applied segmental distraction may lead to damage of the great vessels
- Involved vertebral endplate dimensionally smaller than the minimum implant footprint size in both the medial-lateral and the anteriorposterior directions
- Severe abnormality of the endplate (e.g. large Schmorl nodes)
- Posterior spinal defect (e.g. Pars defect)
Kinematics

The kinematics correspond to the physiological conditions in the vertebral joints:

The rotational center is just below the superior endplate of the affected caudal vertebral body. The location of the center of rotation and the flexion radius correspond to the natural joint guidance in the vertebral joints. The physiological range of motion in regard to flexion/extension and lateral bending is restored. The axial rotation is limited only by the anatomical structures and not by the prosthesis. Pure translatory movements are not possible due to the ball and socket principle.

Flexion/extension

Lateral bending

1 See White, Panjabi 1990; Pearcy, Portek, Shepard 1984; Pearcy, Tibrewal 1984; Dvorak et al 1991
Axial rotation
Two different sizes are available for enhanced coverage of the vertebral endplates:

- M and L

The patient-specific intervertebral disc height and sagittal alignment of the affected segment can be restored thanks to:

- three different heights (10, 12 and 14 mm)
- four lordosis angles (3°, 6°, 9° and 11°)
Prodisc-L, uncemented

<table>
<thead>
<tr>
<th>Superior plates</th>
<th>3°</th>
<th>M: SSX660K</th>
<th>L: SSX670K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6°</td>
<td>M: SSX520K</td>
<td>L: SSX540K</td>
</tr>
<tr>
<td></td>
<td>11°</td>
<td>M: SSX522K</td>
<td>L: SSX542K</td>
</tr>
<tr>
<td>Inferior plates</td>
<td>0°</td>
<td>M: SSX524K</td>
<td>L: SSX544K</td>
</tr>
<tr>
<td></td>
<td>3°</td>
<td>M: SSX662K</td>
<td>L: SSX672K</td>
</tr>
<tr>
<td></td>
<td>8°</td>
<td>M: SSX664K</td>
<td>L: SSX674K</td>
</tr>
<tr>
<td>PE-inlays</td>
<td>10 mm</td>
<td>M: SSX626</td>
<td>L: SSX646</td>
</tr>
<tr>
<td></td>
<td>12 mm</td>
<td>M: SSX627</td>
<td>L: SSX647</td>
</tr>
<tr>
<td></td>
<td>14 mm</td>
<td>M: SSX628</td>
<td>L: SSX648</td>
</tr>
</tbody>
</table>

Note: Please observe the recommendations for the application of the different lordosis angles (page 22).
Instruments

The Prodisc-L instrument set has been developed for minimally invasive, endoscopic or microscopic procedures.

Discectomy and mobilization

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW580R</td>
<td>Prodisc-L Elevator</td>
</tr>
<tr>
<td>SFW650R</td>
<td>Prodisc-L Spreader Forceps, curved</td>
</tr>
</tbody>
</table>
Trial implant system

24 trial implants correspond to the possible implant combinations.

Trial implant M, 3°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW751R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW752R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW753R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

Trial implant M, 6°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW651R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW652R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW653R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

Trial implant M, 9°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW754R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW755R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW756R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

Trial implant M, 11°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW654R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW655R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW656R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>
Instruments

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW757R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW758R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW759R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

Trial implant L, 3°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW657R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW658R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW659R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

Trial implant L, 6°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW760R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW761R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW762R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

Trial implant L, 9°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW660R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW661R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW662R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

Trial implant L, 11°

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW660R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW661R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW662R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>
SFW601R Prodisc-L Stop, adjustable, for Trial Implants

The adjustable stop is attached to the trial implant to prevent excessive posterior positioning.

SFW565R Prodisc-L Handle for Trial Implants

SFW602R Prodisc-L Screwdriver for Adjustable Stop

Chisel instruments

Chisel, slotted

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW867R</td>
<td>10 mm</td>
</tr>
<tr>
<td>SFW868R</td>
<td>12 mm</td>
</tr>
<tr>
<td>SFW869R</td>
<td>14 mm</td>
</tr>
</tbody>
</table>

SFW691R Prodisc-L Combined Hammer
Instruments for implant insertion

Inserter

Art. no.	Size
SFW672R | M
SFW673R | L

This multifunctional instrument is used for inserting the two implant plates, distracting the intervertebral space and inserting the PE-Inlay into the inferior plate.

Distractor

Art. no.	Height
SFW874R | 10 mm
SFW875R | 12 mm
SFW876R | 14 mm

Used to distract the inserter arms
Inserter for PE-Inlay

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW577R</td>
<td>M</td>
</tr>
<tr>
<td>SFW578R</td>
<td>L</td>
</tr>
</tbody>
</table>

Used to push PE-Inlay into inferior plate
Sets

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW784R</td>
<td>Vario Case, Extra-large, for Prodisc-L Instruments, with Lid, without Contents</td>
</tr>
<tr>
<td>SFW785R</td>
<td>Vario Case, Extra-large, for Prodisc-L Trial Implants, with Lid, without Contents</td>
</tr>
</tbody>
</table>
Optional Instruments

Struts

straight

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW521</td>
<td>Height 10 mm, 6°, length 150 mm</td>
</tr>
<tr>
<td>SFW522</td>
<td>Height 12 mm, 6°, length 150 mm</td>
</tr>
<tr>
<td>SFW531</td>
<td>Height 10 mm, 6°, length 170 mm</td>
</tr>
<tr>
<td>SFW532</td>
<td>Height 12 mm, 6°, length 170 mm</td>
</tr>
<tr>
<td>SFW541</td>
<td>Height 10 mm, 6°, length 190 mm</td>
</tr>
<tr>
<td>SFW542</td>
<td>Height 12 mm, 6°, length 190 mm</td>
</tr>
</tbody>
</table>

angled

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW621</td>
<td>Height 10 mm, 6°, length 150 mm</td>
</tr>
<tr>
<td>SFW622</td>
<td>Height 12 mm, 6°, length 150 mm</td>
</tr>
<tr>
<td>SFW631</td>
<td>Height 10 mm, 6°, length 170 mm</td>
</tr>
<tr>
<td>SFW632</td>
<td>Height 12 mm, 6°, length 170 mm</td>
</tr>
<tr>
<td>SFW641</td>
<td>Height 10 mm, 6°, length 190 mm</td>
</tr>
<tr>
<td>SFW642</td>
<td>Height 12 mm, 6°, length 190 mm</td>
</tr>
</tbody>
</table>

388.140 Socket Wrench Ø 6.0 mm, with straight handle

SFW520 Prodisc-L Handle for Strut
Optional Instruments

SFW788R Vario Case for Prodisc-L Struts, with Lid, without Contents

The Prodisc-L struts hold the disc segment open and facilitate the discectomy procedure and the insertion of the prosthesis. The struts can be secured to the SynFrame.

Note: The struts should never be used to spread the segment, only to hold open a segment that has already been mobilized. The struts are positioned upright into the intervertebral disc space without applying any force while the intervertebral disc space is held open by the spreader forceps (SFW650R).
Spreader Forceps, straight

| Art. no. | SFW550R |

Wing Nut for Distractors

| Art. no. | SFW893R |

The wing nuts allow the distractors to be used with both hands.

Revision Set

An indicated instrument set is available for any revisions to the Prodisc-L (68.820.100). Please contact your Synthes representative.
Other Synthes Products for Access, Discectomy and Endplate Preparation

SynFrame. Modular approach and retraction system for minimally invasive surgery.

<table>
<thead>
<tr>
<th>Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.609.102</td>
<td>Set SynFrame RL, lumbar</td>
</tr>
<tr>
<td>187.310</td>
<td>SynFrame Basic System in Vario Case</td>
</tr>
</tbody>
</table>

The SynFrame System is a modular approach and retraction system consisting of a basic system (basic construction) and modules specially designed for specific requirements and applications of various indications and/or approach techniques. The structure of the SynFrame basic system is always in the same sequence and according to the same principles. SynFrame RL lumbar is an additional module for the approach and retraction system SynFrame. It includes radiolucent soft tissue and muscle retractors and semi-transparent bone levers for minimally invasive procedures.

SynFrame-RL. Radiolucent retractors

The radiolucent components (retractors and bone levels) allow the relevant parts to be constantly visible during Prodisc surgery.
Proprep. Intervertebral disc preparation set for anterior lumbar surgery.

Electric Pen Drive and Air Pen Drive. Compact drive units with specific attachments for a wide range of applications. A specific attachment is available for endplate preparation (05.001.055).

Desired attachment to prepare the endplate for Prodisc insertion.

For further information please contact your local Synthes representative.
Recommendation on the application of the various lordosis angles

If the patient is in an upright position, the PE-inlay should always be placed in as horizontal a position as possible. It is essential to ensure that the PE-inlay is not inclined in a posterior direction.

The following recommendations apply to most cases:

L5/S1
Inferior plates with lordosis angles should be selected for L5/S1 if the angle between the horizontal (for upright patients) and the S1 endplates is at least 15°.

Examples: A combination of 3° superior plate and 3° inferior plate for a segmental lordosis of 6°, or a combination of 3° superior plate and 8° inferior plate for a segmental lordosis of 11°.

L4/L5 and higher
Inferior plates without a lordosis angle (0°) should generally be used for L4/L5 segments and higher.

A prosthesis with a 3° lordosis angle (combination of 3° superior plate and 0° inferior plate) should only be used in segments with a segmental lordosis of close to 0°.

Note: Only implants with a total lordosis angle (3°, 6°, 9° and 11°) represented by a trial implant may be implanted.

Note: In order to reduce the risk of atraumatic peri-prosthetic vertebral fractures, surgeons must consider all co-morbidities, past and present medications, previous treatments, etc. Upon reviewing all relevant information the surgeon must determine whether a bone density scan is prudent. A screening questionnaire, SCORE (Simple Calculated Osteoporosis Risk Estimation) may be used to screen patients if a DEXA is performed, exclusion from receiving the device should be considered if the DEXA bone density measured T-score is < −1.0 as this patient may be osteoporotic.
1. Approach

Expose the intervertebral disc and the adjacent vertebral bodies through the anterior approach to the lumbar spine. The approach can either be transperitoneal or retroperitoneal. Identify and mark the midline with the image intensifier.

2. Discectomy

Required instrument

SFW580R Elevator

Carefully clean out the intervertebral space with the elevator and remove the intervertebral disc tissue and cartilage fragments from the endplates.
3. Mobilize segment

Required instruments

<table>
<thead>
<tr>
<th>Instrument Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW550R</td>
<td>Spreader Forceps, straight</td>
</tr>
<tr>
<td>SFW650R</td>
<td>Spreader Forceps, curved</td>
</tr>
</tbody>
</table>

Prior to distraction ensure that the position of the spreader forceps posterior is adequately deep. Check the lateral position using the image intensifier.

Distract the intervertebral space with the spreader forceps in a parallel manner to restore the height and to enable access to the posterior part.

Note: An essential prerequisite for a satisfactory clinical result is good mobilization. Insufficient mobilization can also result in an overload of the insertion instruments.
4. Insert the trial implant

Required instruments

<table>
<thead>
<tr>
<th>Instrument Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW565R</td>
<td>Prodisc-L Handle for Trial Implants</td>
</tr>
<tr>
<td>SFW601R</td>
<td>Prodisc-L Stop, adjustable, for Trial Implants</td>
</tr>
<tr>
<td>SFW602R</td>
<td>Prodisc-L Screwdriver for Adjustable Stop</td>
</tr>
<tr>
<td>SFW691R</td>
<td>Prodisc-L Combined Hammer</td>
</tr>
</tbody>
</table>

Determine the final size, height and lordosis angle and the position of the prosthesis. The aim is to select the largest possible footprint with the smallest necessary height.

Align the trial implant with the midline; while monitoring the process on the image intensifier, carefully use the hammer to insert the trial implant into the intervertebral space to the rear edge of the endplate.

The trial implant should be lightly secured by the endplates of the adjacent vertebral bodies. If the implant is seated too loosely in the intervertebral space, select the next highest size. Check the position of the trial implant using the image intensifier, both from an AP perspective as well as laterally.

Note: The trial implant can be optimally positioned with the aid of the adjustable stop to prevent the implant from being inserted too far into the intervertebral space. If the trial implant must be positioned more deeply, the stop can be adjusted using the screwdriver. One 360° rotation equals 1 mm.
5. Chiseling

Required instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW867R</td>
<td>Prodisc-L Chisel, 10 mm</td>
</tr>
<tr>
<td>SFW868R</td>
<td>Prodisc-L Chisel, 12 mm</td>
</tr>
<tr>
<td>SFW869R</td>
<td>Prodisc-L Chisel, 14 mm</td>
</tr>
<tr>
<td>SFW691R</td>
<td>Prodisc-L Combined Hammer</td>
</tr>
</tbody>
</table>

Guide the chisel over the shaft of the trial implant and create the keel bed for the prosthesis.

The selected trial implant serves as a guide for the chisel and sets the direction and chisel depth.

The chisel cut determines the final implant position and must therefore be checked with the image intensifier.

Precaution: Heterotopic ossification (HO) is a possible cause for fusion of the treated segment. Copious saline lavage is recommended to remove osteogenic stimuli (blood/bone marrow). HO might be reduced when bone wax is used to close cavities in the bone (screw holes) and open bone surfaces after removal of anterior osteophytes¹.

¹ See Barbagallo 2014
6. Insert the implant plates

Required instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW672R</td>
<td>Prodisc-L Inserter for size M</td>
</tr>
<tr>
<td>SFW673R</td>
<td>Prodisc-L Inserter for size L</td>
</tr>
<tr>
<td>SFW691R</td>
<td>Prodisc-L Combined Hammer</td>
</tr>
</tbody>
</table>

Place the top and bottom implant plates on the inserter. Lock the bottom plate by turning the inserter arms. Using the chisel cuts as a guide, insert the implant plates into the intervertebral space.

Check the final position of the implant using the image intensifier, both from an AP perspective as well as laterally.

Note: This step is done without distraction so as not to damage tissues, longitudinal ligaments and nerve roots.

Note: Do not attempt to force and lock the polyethylene inlay if the end plates have not separated. Additional discectomy and remobilization may be required if the end plates do not separate.

Note: The ProDisc-L implants are not designed to be used with bone cement.
7. Insert the PE-inlay

Required instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW874R</td>
<td>Prodisc-L Distractor for height 10 mm</td>
</tr>
<tr>
<td>SFW875R</td>
<td>Prodisc-L Distractor for height 12 mm</td>
</tr>
<tr>
<td>SFW876R</td>
<td>Prodisc-L Distractor for height 14 mm</td>
</tr>
<tr>
<td>SFW577R</td>
<td>Prodisc-L Inserter for PE-Inlay size M</td>
</tr>
<tr>
<td>SFW578R</td>
<td>Prodisc-L Inserter for PE-Inlay size L</td>
</tr>
</tbody>
</table>

Lay the PE-Inlay as shown on the instrument (“dome up”) in the slot of the inserter. Use the distractor corresponding to the selected implant height and attach it to the inserter.

Use the wing nut to screw the distractor down to the mechanical stop. While distracting the segment the PE-Inlay is automatically brought into position along the slot.

Check the distance between the implant plates using the image intensifier. There should be a visible radiolucent space between the metal plates.

Using the inserter, insert the PE-Inlay into the bottom plate of the implant until it snaps into place.

Note: It is crucial to check visually and manually if the PE-inlay is securely locked into the inferior implant plate (“no step, no gap”).

Check the final position of the prosthesis using the image intensifier.
8. Remove instruments

Required instruments

<table>
<thead>
<tr>
<th>SFW691R</th>
<th>Prodisc-L Combined Hammer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFW582R</td>
<td>Prodisc-L Lever for Insertion Instruments</td>
</tr>
</tbody>
</table>

Unlock the inferior plate by turning the arms outwards. Using a slide hammer, pull the inserter straight back and remove from the operative field.

Note: The use of a lever for insertion instruments can facilitate the rotation of the distractor arms.

The implant is now – oriented on the midline – securely seated on the cortical ring of the vertebral body.

Check the final position of the implant using the image intensifier, both from an AP perspective as well as laterally.
Multisegmental procedures

Perform multisegmental operations one segment at a time.

All instruments must be removed from the treated segment before the next affected segment can be exposed and cleaned out.

Follow steps 2–8 as described above.

Note: In the case of multisegmental surgery, always start with the segment that is most severely collapsed.
Case 1: Degenerative disc disease L5/S1

Patient: Female, 56 years of age
Symptoms: Continuous, severe pain in the lower back
Diagnosis: Back pain arising from an intervertebral disc in the lumbar region L5/S1
Segmental instability
Herniated nucleus pulposus L5/S1
Signs of Modic change

Prior therapy: Unsuccessful conservative treatment (for more than 6 months)

Visual analogue scale:

- Preoperative: 8.5
- Postoperative: 3.0 (24 months after operation)

Satisfaction: Episodic back pain, completely satisfied with the treatment
Case 2: Degenerative disc disease L3/L4 and L4/L5

Preoperative

Patient: Male, 47 years of age
Symptoms: Continuous, severe pain in the lower back
Diagnosis: Back pain arising from an intervertebral disc in the lumbar region L3–L5
Segmental instability of L3–L5
modic signs
Prior therapy: Unsuccessful spinal surgery (for more than 6 months)
Visual analogue scale:
- Preoperative: 8.0
- Postoperative: 0.0 (24 months after operation)
Satisfaction: No back pain, completely satisfied with the treatment

MRI lateral
Anteroposterior
Lateral

Anteroposterior
Lateral
Lateral flexion
Lateral extension
Case 3: Degenerative disc disease L3/L4 – fused segments L4–S1

Patient: Male, 57 years of age
Symptoms: Continuous, severe pain in the lower back
Diagnosis: Back pain arising from an intervertebral disc in the lumbar region L3/L4
Segmental instability at L3/L4 neighbouring fusion of L4–S1
Secondary spinal stenosis L3/L4
Prior therapy: Unsuccessful conservative treatment (for more than 6 months)
Visual analogue scale:

<table>
<thead>
<tr>
<th></th>
<th>Preoperative: 6.2</th>
<th>Postoperative: 1.0 (24 months after operation)</th>
</tr>
</thead>
</table>

Satisfaction: No back pain, completely satisfied with the treatment

Bertagnoli R, Marnay T, Mayer HM (2005) Total Disc Replacement for degenerative disc disease in the lumbar spine. 2nd ed. Synthes, Oberdorf

