LCP Proximal Femoral Plate 4.5/5.0.
Part of the LCP Periarticular Plating System.
Table of Contents

Introduction

Features and Benefits 2
AO Principles 4
Indications 6

Surgical Technique

Implantation 7
Tips 20

Product Information

Plates 21
Screws 22
Drill and Wire Guides 24
Sets 26

Warning
This description is not sufficient for immediate application of the instrumentation. Instruction by a surgeon experienced in handling this instrumentation is highly recommended.

Processing, Reprocessing, Care and Maintenance
For general guidelines, function control and dismantling of multi-part instruments, as well as processing guidelines for implants, please contact your local sales representative or refer to: www.synthes.com/reprocessing
For general information about reprocessing, care and maintenance of Synthes reusable devices, instrument trays and cases, as well as processing of Synthes non-sterile implants, please consult the Important Information leaflet (SE_023827) or refer to: www.synthes.com/reprocessing
Features and Benefits

The Synthes LCP Proximal Femoral Plate 4.5/5.0 is part of the LCP Periarticular Plating System, which merges locking screw technology with conventional plating techniques.

LCP Periarticular Plating System
The LCP Periarticular Plating System is capable of addressing:
– complex fractures of the proximal femur with the LCP Proximal Femoral Plate 4.5/5.0 or the LCP Proximal Femoral Hook Plate 4.5/5.0.
– complex fractures of the distal femur with the LCP Condylar Plate 4.5/5.0.
– complex fractures of the proximal tibia with the LCP Proximal Tibia Plate 4.5/5.0 or the LCP Medial Proximal Tibia Plate 4.5/5.0.

Locking Compression Plate
The Locking Compression Plate (LCP) has combi-holes in the plate shaft that combine a dynamic compression unit (DCU) hole with a threaded locking hole. The combi-hole provides the flexibility of cortex screw or locking screw fixation.

Note: More detailed information on conventional and locked plating principles can be found in the Synthes Locking Compression Plate (LCP) Technique Guide (Art. No. 036.000.019).
The two proximal plate holes are threaded and accept 7.3 mm cannulated locking screws (locking, conical fully threaded, or conical partially threaded).

The third locking hole is threaded to accept 5.0 mm cannulated locking screws. (Necessity of this screw is fracture configuration dependent and should be identified during preoperative planning.)

The holes in the shaft of the plate are combi-holes that accept 5.0 mm locking screws in the threaded portion of the hole and 4.5 mm cortex screws in the DCU portion.

LCP Proximal Femoral Plate

The LCP Proximal Femoral Plate is a limited-contact stainless steel plate. The proximal portion of the plate is precontoured for the proximal femur. The two proximal screw holes are designed for 7.3 mm cannulated locking screws and the third locking hole is designed for 5.0 mm cannulated locking screws. The hole for 5.0 mm locking screws is angled so the screw trajectory converges with the proximal 7.3 mm screw. Improved proximal femoral fixation in osteopenic bone is achieved by the screw angulation and the locking interface with the plate. The remaining screw holes in the plate shaft are combi-holes. This provides the surgeon with the flexibility to achieve plate-to-bone apposition as well as axial compression or angular stability.

- Anatomically contoured to approximate the lateral aspect of the proximal femur
- Plates specifically designed for left or right femur to accommodate average femoral neck anteversion
- Plate lengths allow spanning of the entire diaphysis in segmental fracture patterns
- Use of locking screws provides the option of an angular stable construct independent of bone quality
- Plate can be tensioned to create a load-sharing construct
- Manufactured of implant quality 316L stainless steel
- The three proximal screw holes are at the following angles to the plate shaft:
 - First proximal hole (7.3 mm): 95°
 - Second proximal hole (7.3 mm): 120°
 - Third proximal hole (5.0 mm): 135°
AO Principles

In 1958, the AO formulated four basic principles which have become the guidelines for internal fixation. Those principles as applied to the LCP Proximal Femoral Plate 4.5/5.0 are:

Anatomic reduction
Anatomic plate profile assists reduction of metaphysis to diaphysis and facilitates restoration of the neck-shaft angle by proper screw placement.

Stable fixation
The combination of conventional and locking plate fixation offers optimum fixation irrespective of bone density.

Preservation of blood supply
A limited-contact design reduces plate-to-bone contact and helps to preserve the periosteal blood supply.

Early mobilization
Plate features combined with AO technique create an environment for bone healing, expediting return to function.
Indications

The LCP Proximal Femoral Plate 4.5/5.0 is intended for fractures of the femur including:

- Fractures of the trochanteric region, trochanteric simple, cervicotrchanteric, trochanterodiaphyseal, multifragmentary pertrochanteric, intertrochanteric, trochanteric reversed or transverse or with additional fracture of the medial cortex

- Fractures of the proximal end of the femur combined with ipsilateral shaft fractures

- Metastatic fracture of the proximal femur

- Osteotomies of the proximal femur

- Also for use in fixation of osteopenic bone and fixation of nonunions or malunions
Implantation

1
Preparation

Required sets

LCP Proximal Femoral Plate Set 4.5/5.0 (stainless steel)
Periarticular LCP Plating System Instrument Set
Cannulated Locking and Cannulated Conical Screw Ø 5.0 and 7.3 mm Set
LCP Large Fragment Instrument Set
LCP Large Fragment Screw Set

Complete the preoperative radiographic assessment and prepare the preoperative plan. AP and lateral radiographs of the entire femur are necessary for complete evaluation. Traction radiographs and views of the contralateral femur are useful adjuncts in the planning process.

When considering use of the LCP Proximal Femoral Plate, identify proper placement of the three proximal screws.

Use the x-ray templates to aid in planning the procedure. Determine plate length and approximate screw lengths and instruments to be used. Position the patient supine on a radiolucent operating table, or a fracture extension table for lower energy fracture settings. Fluoroscopic visualization of the femur in both AP and lateral views must be verified prior to patient draping.

2
Reduce fracture

Reduce the fracture using a fracture table, clamps, Schanz screws, or other conventional reduction techniques. Alternatively, provisional indirect fracture reduction may be facilitated by attaching the LCP Proximal Femoral Plate to the proximal segment with appropriately oriented screws, and then to the diaphysis with plate holding forceps.
3

Insert guide wires and establish screw trajectories

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>324.175</td>
<td>Wire Guide 7.3, for Guide Wire Ø 2.5 mm</td>
</tr>
<tr>
<td>324.174</td>
<td>Wire Guide 5.0, for Guide Wire Ø 2.5 mm</td>
</tr>
<tr>
<td>310.243</td>
<td>Guide Wire Ø 2.5 mm with drill tip</td>
</tr>
</tbody>
</table>

Prior to placing the plate on the bone, thread the wire guides into the plate holes for each of the three proximal locking screws. Use the wire guide 7.3 in the two proximal screw holes, and a wire guide 5.0 in the third locking screw hole. The wire guides can also be used as a manipulation aid for positioning the plate on the proximal femur.

Using fluoroscopic image control (AP and lateral), insert a guide wire through the wire guide in each of the three proximal locking holes. For proper screw measurement, guide wires should reach but not penetrate subchondral bone.

Note: It is more important to properly place guide wires in the proximal femur (considering the desired screw positions) than it is to precisely match the contour of the plate to the anatomy of the femur. The ability to lock the screws to the plate obviates the need for precise plate contouring and compressing the plate to the bone.
A. Placement of the proximal guide wire in the AP view is into the midportion of the inferomedial quadrant of the femoral head along a path subtending a 50° angle relative to the calcar femorales. Guide wire placement in this manner will facilitate placement of the proximal locking screw at a 95° angle to the femoral shaft.

B. The proximal wire is ideally placed slightly posterior to central in the lateral view. This accommodates an anteverted position for the second guide wire and screw. Accurate positioning of the proximal guide wire (and ultimately the locking screw) assures frontal plane alignment.
Before a guide wire is inserted into the second wire guide, verify correct sagittal plane alignment of the plate on the proximal femur. This usually requires both visual and fluoroscopic assessment and prevents an extension (apex anterior) deformity when the plate is attached to the diaphysis.

When this alignment is satisfactory, insert the guide wires through the next two (distal) wire guides, maintaining biplanar fluoroscopic control. In some patterns, insertion of the third guide wire may have to be deferred until final reduction (and compression, where possible) has been achieved.
4

Insert proximal 7.3 mm screw

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>319.701</td>
<td>Measuring Device</td>
</tr>
<tr>
<td>314.050</td>
<td>Screwdriver, hexagonal, cannulated</td>
</tr>
</tbody>
</table>

For predrilling dense bone

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>310.632</td>
<td>Drill Bit Ø 5.0 mm, cannulated</td>
</tr>
<tr>
<td>310.634</td>
<td>Drill Bit Ø 4.3 mm, cannulated</td>
</tr>
</tbody>
</table>

Using the measuring device measure for screw length over the guide wire. Select the appropriate length 7.3 mm cannulated locking screw. Use the screwdriver to remove the wire guide.

Technique tip: The self-drilling, self-tapping flutes of the 7.3 mm and 5.0 mm screws make predrilling and pretapping unnecessary in most cases. In dense bone, the lateral cortex can be predrilled, if necessary.

- Use the drill bit Ø 5.0 mm for 7.3 mm screws.
- Use the drill bit Ø 4.3 mm for 5.0 mm screws.
Insert the screw, using fluoroscopy, with the screwdriver. This screw, as with all locking screws not protected by a torque limiting attachment, may be inserted using power. However, final seating and tightening must be done manually. Once the screw has been locked to the plate, the guide wire may be removed.

Note: Recheck each locking screw prior to closing to verify that the screws are securely locked to the plate. Screw heads must be flush with the plate in the locked position before they can be considered fully seated.

In some cases it may be necessary to pull the plate to the bone; if so, use a fully threaded 7.3 mm cannulated conical screw in the proximal screw hole. However, use caution, to avoid changing the alignment of the guide wire with the conical screw. If malignment occurs, it may preclude final exchange of the conical screw for a locking screw, and thereby weaken the overall strength of the plate construct.

Important: Angular stability cannot be achieved with cannulated conical screws. It is always recommended to replace conical screws with locking screws to ensure angular stability.
5
Insert second 7.3 mm screw

Insert the second 7.3 mm screw using the same technique as described in step 4.
6

Approximate the plate to the femoral diaphysis

Instrument

| 321.120 | Tension Device, articulated, span 20 mm |

Secure the plate to the lateral femoral shaft with bone holding forceps, adjusting horizontal plane alignment (rotation) as appropriate. Length restoration and fracture reduction can be facilitated by a number of indirect means, including a fracture table, the Articulated Tension Device (ATD), the large distractor, the large distractor/compressor, or a large external fixator. Judicious, soft tissue preserving, direct reduction techniques with clamps may also be appropriate in some cases.

When the fracture pattern permits, a tensioning device should be applied to the end of the plate to tension the plate and compress the fracture.

Note: Using the ATD to realign the fragments, tension the plate, and compress the fracture creates a load-sharing construct. Alternatively, although less desirable, the plate can be used as a bridging construct in patterns with segmental comminution where plate tensioning cannot be accomplished.
7

Insert 4.5 mm cortex screws

Instruments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>310.310</td>
<td>Drill Bit Ø 3.2 mm</td>
</tr>
<tr>
<td>323.460</td>
<td>Universal Drill Guide 4.5/3.2</td>
</tr>
<tr>
<td>319.100</td>
<td>Depth Gauge</td>
</tr>
<tr>
<td>314.270</td>
<td>Screwdriver, hexagonal, large</td>
</tr>
</tbody>
</table>

Use the drill bit through the drill guide to predrill the bone. For the neutral position, press the drill guide down in the non-threaded hole. To obtain compression, place the drill guide at the end of the non-threaded hole away from the fracture (do not apply downward pressure on the spring-loaded tip.)

Notes

- All 4.5 mm cortex screws must be inserted into the plate shaft before insertion of any locking screws in the plate shaft.
- For detailed instructions please consult the Synthes Locking Compression Plate (LCP) Technique Guide (Art. No. 036.000.019).
Measure for screw length using the depth gauge.

Select and insert the appropriate length 4.5 mm cortex screw using the screwdriver. Insert as many standard 4.5 mm cortex screws as necessary.
8

Insert 5.0 mm locking screws

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.042</td>
<td>LCP Drill Sleeve</td>
</tr>
<tr>
<td>310.430</td>
<td>LCP Drill Bit 4.3 mm</td>
</tr>
<tr>
<td>319.100</td>
<td>Depth Gauge</td>
</tr>
<tr>
<td>511.771</td>
<td>Torque Limiter 4.0 Nm</td>
</tr>
<tr>
<td>314.119</td>
<td>Screwdriver Shaft Stardrive, T25, self-holding</td>
</tr>
<tr>
<td>314.150</td>
<td>Screwdriver Shaft, hexagonal or</td>
</tr>
<tr>
<td>314.152</td>
<td>Screwdriver Shaft, hexagonal, self-holding or</td>
</tr>
<tr>
<td>324.052</td>
<td>Torque-indicating Screwdriver, 4.0 Nm</td>
</tr>
<tr>
<td>397.705</td>
<td>Handle for Torque Limiter Nos. 511.770 and 511.771</td>
</tr>
<tr>
<td>311.431</td>
<td>Handle with Quick Coupling</td>
</tr>
</tbody>
</table>

Attach the drill sleeve to the threaded portion of a hole in the plate shaft.

Carefully drill the screw hole using the drill bit. Read the drilled depth directly from the laser mark on the drill bit or determine the screw length with the depth gauge.

Insert the appropriate length 5.0 mm locking screw with a power tool and the torque limiter or manually with a handle and the torque limiter. The screw has to be tightened manually. After one click, the optimum torque is reached.

Notes

– Use of the drill guide is required. It centers the drill bit in the threaded portion of the combi-hole and thus creates a screw trajectory that ensures that the screw engages properly in the plate.
– Holes for locking screws may be drilled unicortically or bicortically, depending on bone quality.
– For detailed instructions please consult the Synthes Locking Compression Plate (LCP) Technique Guide (Art. No. 036.000.019).
Repeat as necessary to insert additional locking screws.
9

Insert oblique 5.0 mm cannulated locking screw

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>319.701</td>
<td>Measuring Device</td>
</tr>
<tr>
<td>314.050</td>
<td>Screwdriver, hexagonal, cannulated</td>
</tr>
</tbody>
</table>

Using the wire guide and guide wire previously inserted at this hole location, measure for the screw length with the measuring device. The correct length measurement will place the screw at the tip of the guide wire.

Screw length considerations: The angled 5.0 mm cannulated locking screw in the plate shaft is intended to converge with the 95°, 7.3 mm screw to create a buttress which will provide additional stability. This convergence should occur when using a 5.0 mm cannulated locking screw that is 85 mm in length.

Remove the wire guide and insert the appropriate length screw over the guide wire and into the bone using the screwdriver. Locking screws may be inserted using power equipment. However, final seating and tightening must be done manually.

Notes

- The need for this screw is fracture configuration dependent and should be determined during preoperative planning.
- Securely tighten all locking screws again prior to closing.
Cleaning the cannulation in each instrument is imperative for proper function. Instruments should be cleared intraoperatively using the cleaning stylet to prevent accumulation of debris in the cannulation and potential binding of the instruments about the guide wire.

Preliminary plate shaft attachment
The Tension Device Ø 4.0 mm (324.033) can be used to approximate the plate shaft to the diaphysis and counteract medial diaphyseal displacement.

Reduction and fixation
- If an extension table is used, careful traction should be applied to prevent the gastrocnemius muscle from pulling the distal fragment posteriorly or into hyperflexion. Posterior support of the distal fragment can assist reduction.
- Sagittal plane reduction may be facilitated using a Schanz screw as a “joystick” in the anterior cortex of the distal fragment. Insertion of a Schanz screw into the proximal fragment may also be helpful. Should it still be impossible to achieve fracture reduction, extend the incision to improve access.
- When using a radiolucent table, towel bumps can be used under the diaphyseal segment to help reduce the fracture in the lateral plane.
- Limb axis can be checked using the C-Arm and a cauterity cord from the femoral head to the center of the ankle joint on an AP view. Use the C-Arm at the knee to check that the cord passes 10 mm medially to the center of the knee joint. Adjustment to varus-valgus reduction should be performed before locking screw placement in the malaligned fragment.
- Fractures not treated acutely should be placed in skeletal traction to maintain length until plate fixation can be performed.
LCP Proximal Femoral Plates 4.5/5.0

<table>
<thead>
<tr>
<th>Stainless steel</th>
<th>Holes</th>
<th>Length (mm)</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.802</td>
<td>2</td>
<td>139</td>
<td>right</td>
</tr>
<tr>
<td>242.804</td>
<td>4</td>
<td>175</td>
<td>right</td>
</tr>
<tr>
<td>242.806</td>
<td>6</td>
<td>211</td>
<td>right</td>
</tr>
<tr>
<td>242.808</td>
<td>8</td>
<td>247</td>
<td>right</td>
</tr>
<tr>
<td>242.810</td>
<td>10</td>
<td>283</td>
<td>right</td>
</tr>
<tr>
<td>242.812</td>
<td>12</td>
<td>319</td>
<td>right</td>
</tr>
<tr>
<td>242.814</td>
<td>14</td>
<td>355</td>
<td>right</td>
</tr>
<tr>
<td>242.816</td>
<td>16</td>
<td>391</td>
<td>right</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stainless steel</th>
<th>Holes</th>
<th>Length (mm)</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.102</td>
<td>2</td>
<td>139</td>
<td>left</td>
</tr>
<tr>
<td>242.104</td>
<td>4</td>
<td>175</td>
<td>left</td>
</tr>
<tr>
<td>242.106</td>
<td>6</td>
<td>211</td>
<td>left</td>
</tr>
<tr>
<td>242.108</td>
<td>8</td>
<td>247</td>
<td>left</td>
</tr>
<tr>
<td>242.110</td>
<td>10</td>
<td>283</td>
<td>left</td>
</tr>
<tr>
<td>242.112</td>
<td>12</td>
<td>319</td>
<td>left</td>
</tr>
<tr>
<td>242.114</td>
<td>14</td>
<td>355</td>
<td>left</td>
</tr>
<tr>
<td>242.116</td>
<td>16</td>
<td>391</td>
<td>left</td>
</tr>
</tbody>
</table>

All plates are available sterile packed. For sterile implants add suffix S to article number.
Screws

Cannulated Locking Screw Ø 7.3 mm (02.207.020–02.207.145)
- Creates a locked, fixed-angle screw-plate construct
 - Threaded conical head
 - Fully threaded shaft
 - Self-drilling, self-tapping tip

Cannulated Conical Screw Ø 7.3 mm (02.207.250–02.207.295)
- Compresses the plate to the bone
 - Smooth conical head
 - Fully threaded shaft
 - Self-drilling, self-tapping tip

Cannulated Conical Screw Ø 7.3 mm (02.207.450–02.207.545)
- Compresses the plate to the bone and provides interfragmentary compression
 - Smooth conical head
 - Partially threaded shaft
 - Self-drilling, self-tapping tip

Cannulated Locking Screw Ø 5.0 mm (02.205.025–02.205.145)
- Creates a locked, fixed-angle screw-plate construct
 - Threaded conical head
 - Fully threaded shaft
 - Self-drilling, self-tapping tip
Cannulated Conical Screw Ø 5.0 mm (02.205.240–02.205.295)
Compresses the plate to the bone and provides interfragmentary compression
– Smooth conical head
– Partially threaded shaft
– Self-drilling, self-tapping tip

Locking Screw Ø 5.0 mm (213.314–213.390/212.201–212.227)
Creates a locked, fixed-angle screw-plate construct
– Threaded conical head
– Fully threaded shaft
– Self-tapping tip

Cortex Screw Ø 4.5 mm (214.814–214.940)
– May be used in the DCU portion of the combi-holes in the plate shaft
– Compresses the plate to the bone or creates axial compression
Drill and Wire Guides

Drill guides for self-tapping screws

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323.042</td>
<td>LCP Drill Sleeve 5.0, for Drill Bits Ø 4.3 mm</td>
</tr>
<tr>
<td>324.203</td>
<td>Drill Guide Ø 4.3 mm, percutaneous, with thread</td>
</tr>
</tbody>
</table>

Wire guides for cannulated screws

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>324.174</td>
<td>Wire Guide 5.0, for Guide Wire Ø 2.5 mm</td>
</tr>
<tr>
<td>324.175</td>
<td>Wire Guide 7.3, for Guide Wire Ø 2.5 mm</td>
</tr>
<tr>
<td>324.215</td>
<td>Wire Guide 5.0, percutaneous, for Guide Wire Ø 2.5 mm</td>
</tr>
</tbody>
</table>

* Found in the Percutaneous Instrument Set
The hexagonal Screwdriver (313.930) and the cannulated hexagonal Screwdriver (314.050) for Cannulated Screws 6.5 and 7.3 mm can be used to facilitate insertion and removal of wire and drill guides.
Sets

01.120.021 Periarticular Instruments

- 68.120.447 Vario Case
- 68.120.445 Insert

01.120.022 Cannulated Conical and Cannulated Locking Screws Ø 7.3 and 5.0 mm (stainless steel)

- 68.120.450 Sterilizing Tray

Additionally required
- LCP Large Fragment Instrument Set
- LCP Large Fragment Screw Set
01.120.325 LCP Proximal Femoral Plates 4.5/5.0

68.120.332 Insert